

Friedrich® Commercial *F-Series*Packaged Air Conditioner featuring HumidiDry™ Technology

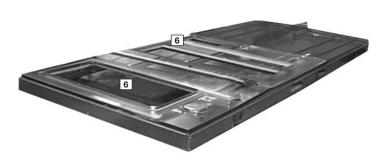
RLNL-G Series

With ClearControl™, HumidiDry™ and VFD technology Nominal Sizes 15-25 Tons [52.8-87.9 kW] ASHRAE 90.1-2019 Compliant

TABLE OF CONTENTS

Unit Features & Benefits	3-9
Model Number Identification	10
Options	11
Selection Procedure	12
General Data	
RLNL-G Series	13-15
General Data Notes	16
Gross Systems Performance Data	
RLNL-G Series	17-19
Gross Systems Performance Data - Reheat	
RLNL-G Series	20-22
Indoor Airflow Performance	
RLNL-G Series	23-28
Electrical Data	
RLNL-G Series	29-30
Electric Heater Kits	31-32
Dimensional Data	33-36
Accessories	37-51
Mechanical Specifications	52-57
Limited Warranty	58

RLNL-G STANDARD FEATURES INCLUDE:


- R-410A HFC refrigerant.
- Complete factory charged, wired and run tested.
- Scroll compressors with internal line break overload and high-pressure protection.
- Dual stage compressor on all models.
- Convertible airflow vertical downflow or horizontal sideflow.
- TXV refrigerant metering system on each circuit.
- High Pressure and Low Pressure/Loss of charge protection standard on all models.
- Solid Core liquid line filter drier on each circuit.
- Single slab, single pass designed evaporator and condenser coils facilitate easy cleaning for maintaining high efficiencies.
- Cooling operation up to 125 degree F ambient.
- Foil faced insulation encapsulated throughout entire unit minimizes airborne fibers from the air stream.
- Hinged major access door with heavy-duty gasketing, 1/4 turn latches and door retainers.
- Slide Out Indoor fan assembly for added service convenience.
- Powder Paint Finish meets ASTMB117 steel coated on each side for maximum protection. G90 galvanized.
- Base pan with drawn supply and return opening for superior water management.

- Forkable base rails for easy handling and lifting.
- Single point electrical connections.
- Internally sloped slide out condensate pan conforms to ASHRAE 62 standards.
- High performance belt drive motor with variable pitch pulleys and quick adjust belt system.
- Permanently lubricated evaporator, condenser and gas heat inducer motors.
- Condenser motors are internally protected, totally enclosed with shaft down design.
- 2 inch filter standard with slide out design.
- 24 volt control system with resettable circuit breakers.
- Colored and labeled wiring.
- Copper tube/Aluminum Fin coils.
- Supplemental electric heat provides 100% efficient heating.
- Factory Installed ClearControl™ (DDC) and sensors which can connect to LonWorks™ or BACnet® BAS systems for remote monitoring and control.
- Variable Frequency Drive (VFD).
- HumidiDry™ Dehumidification System.
- MERV 8 and MERV 13 filters are available as an accessory.
- Standard Modbus interface

Friedrich® Packaged equipment is designed from the ground up with the latest features and benefits required to compete in today's market. The clean design stands alone in the industry and is a testament to the quality, reliability, ease of installation and serviceability that goes into each unit. Outwardly, the large Friedrich Commercial Series™ label (1) identifies the brand to the customer. The sheet-metal cabinet (2) uses nothing less than 20-gauge material for structural components with an underlying coat of G90. To ensure the leak-proof integrity of these units, the design utilizes a top with a 1/8" drip lip (3), gasket-protected panels and screws. (4) The outdoor coil is slanted to protect from hail. Every Friedrich packaged unit uses the toughest finish in the industry, using electro deposition baked-on enamel tested to withstand a rigorous 1000-hour salt spray test, per ASTM B117.

Anything built to last must start with the right foundation. In this case, the foundation is 14-gauge, commercial-grade, full-perimeter base rails (5), which integrate fork slots and rigging holes to save set-up time on the job site. The base pan is stamped, which forms a 1-1/8" flange around the supply and return cover and has eliminated the worry of water entering the conditioned space (6). The drainpan (7) is made of plastic that resists the growth of harmful bacteria and is sloped for the latest IAQ benefits. Furthermore, the drain pan slides out for easy cleaning. The insulation has been placed on the underside of the basepan, removing areas that would allow for potential moisture accumulation, which can facilitate growth of harmful bacteria. All insulation is secured with both adhesive and mechanical fasteners, and all edges are hidden.

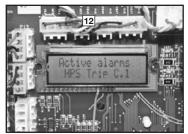
During development, each unit was tested to U.L. 1995, AHRI 340-360 and other Friedrich-required reliability tests. Friedrich adheres to stringent ISO 9001:2015 quality procedures, and each unit bears the U.L. and AHRI certification labels located on the unit nameplate (8). Contractors can rest assured that when a Friedrich packaged unit arrives at the job, it is ready to go with a factory charge and quality checks.


Access to all major compartments is from the front of the unit, including the filter and electrical compartment, blower compartment, heating section, and outdoor section. Each panel is permanently embossed with the compartment name (control/filter access, blower access and furnace access).

Electrical and filter compartment access is through a large, hinged-access panel with 1/4 turn latches. On the outside of the panel is the unit nameplate, which contains the model and serial number, electrical data and other important unit information.

The unit charging chart is located on the inside of the electrical and filter compartment door. Electrical wiring diagrams are found on the control box cover, which allows contractors to

move them to more readable locations. To the right of the control box the model and serial number can be found. Having this information on the inside will assure model identification for the life of the product. The production line quality test assurance label is also placed in this location (9). The twoinch throwaway filters (10) are easily removed on a tracked system for easy replacement.



Inside the control box (11), each electrical component is clearly identified with a label that matches the component to the wire diagram for ease of trouble shooting. All wiring is numbered on each end of the termination and color-coded to match the wiring diagram. The control transformer has a low voltage circuit breaker that trips if a low voltage electrical short occurs. There is a blower contactor and contactor for each compressor.

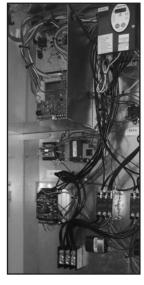
As part of the ClearControl™ system which allows real time monitoring and communication between rooftop units, the RLNL-G Packaged Air Conditioner has a Rooftop Unit Controller

(RTU-C) factory mounted and wired in the control panel. The RTU-C is a solid-state microprocessor-based control board that provides flexible control and extensive diagnostics for all unit functions. The RTU-C through proportional/integral control algorithms perform specific unit functions that

govern unit operation in response to: zone conditions, system temperatures, system pressures, ambient conditions and electrical inputs. The RTU-C features a 16 x 2 character LCD display and a five-button keypad for local configuration and direct diagnosis of the system ([12]). New features include a clogged filter switch (CFS), fan proving switch (FPS), return air temperature sensor (RAT), discharge air temperature sensor (DAT) and outdoor air temperature sensor (OAT). Freeze sensors (FS) are used in place of freezestats to allow measurement of refrigerant suction line temperatures. The RLNL-G Packaged Air Conditioner with the ClearControl™ is specifically designed to be applied in four distinct applications:

The RLNL-G is compatible with a third party building management system that supports the BACnet Application Specific Controller device profile, with the use of a field installed BACnet Communication Module. The BACnet Communication Module plugs into the unit RTU-C controller and allows communication between ClearControl™ and the BACnet MSTP or IP network. A zone sensor, a BACnet network zone sensor, a BACnet thermostat or DDC controller may be used to send the zone temperature or thermostat demands to the RTU-C. The BACnet Communication Module is compatible with MSTP EIA-485 daisy chain networks communicating at 38.4 bps. It is compatible with twisted pair, shielded cables.

The RLNL-G is compatible with a third party building management system that supports the LonMark Space Comfort Controller (SCC) functional profile or LonMark Discharge Air Controller (DAC) functional profile. This is accomplished with a field installed LonMark communication module. The LonMark Communication Module plugs onto the RTU-C controller and allows communication between ClearControl™ and a LonWorks Network. A zone sensor, a LonTalk network zone sensor, or a LonTalk thermostat or DDC controller may be used to send the zone temperature or thermostat demands to the RTU-C. The LonMark Communication Module utilizes an FTT-10A free topology transceiver communicating at 78.8 kbps. It is compatible with Echelon qualified twisted pair cable, Belden 8471 or NEMA Level 4 cables. The Module can communicate up to 1640 ft. with no repeater. The LonWorks limit of 64 nodes per segment applies to this device.


The RLNL-G is compatible with a programmable 24 volt thermostat. Connections are made via conventional thermostat screw terminals. Extensive unit status and diagnostics are displayed on the LCD screen of the RTU-C.

The RLNL-G is compatible with a zone sensor and mechanical or solid state time clock connected to the RTU-C. Extensive unit status and diagnostics are displayed on the LCD screen of the ClearControl™.

A factory or field installed Comfort Alert® module is available for power phase-monitoring protection and additional compressor diagnostics. The alarms can be displayed on the ClearControl™ display, through the (BAS) network, or connected to the "L-Terminal" of a thermostat for notification.

RLNL-G Series

Factory installed VFD (variable frequency drive) supply fan optimizes energy usage year round by providing a lower speed for first stage cooling operation improving IEER's over the conventional constant fan system. Furthermore, operating in the constant fan mode at the reduced speed can use as little as 1/5th of the energy of a conventional constant fan system. Also, by operating at a lower speed on first stage cooling up to 51% more moisture is removed improving comfort during low load operation. The VFD supply fan factory option meet's California Title 24 and ASHRAE 90.1-2019 requirements for multi blower speed control. VFD also ramps up to the desire speed reducing stress on the supply fan components and reducing the noise

from sudden inrush of air. Because the airflow is cut in half during first stage cooling and constant fan operation, noise is much less during these modes of operation.

For added convenience in the field, a factory-installed convenience outlet (13) is available. Low and High voltage can enter either from the side or through the base. Low-voltage connections are made through the low-voltage terminal strip. For ease of access, the U.L.-required

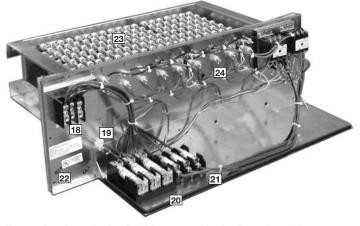
low voltage barrier can be temporarily removed for low-voltage termination and then reinstalled. The high-voltage connection is terminated at the high voltage terminal block. The suggested mounting for the field-installed disconnect is on the exterior side of the electrical control box.

The blower compartment is to the right of the control box and can be accessed by 1/4 turn latches. To allow easy maintenance of the blower assembly, the entire assembly easily slides out by removing four

#10 screws from the blower assembly. The adjustable motor pulley (14) can easily be adjusted by loosening the bolts on either side of the motor mount. Removing the bolts allows for easy removal of the blower pulley by pushing the blower assembly up to loosen the belt. Once the pulley is removed, the motor sheave can be adjusted to the desired number of turns, ranging from 1 to 6 turns open. Where the demands for the job require high static, Friedrich® has high-static drives available that deliver nominal airflow up to 2" of static. By referring to the airflow performance tables listed in the installation instructions, proper static pressure and CFM requirements can be dialed in. The scroll housing (15) and blower scroll provide quiet and efficient airflow. The blower sheave is secured by an "H" bushing which firmly secures the pulley to the blower shaft for years of trouble-free operation. The "H" bushing allows for easy removal of the

blower pulley from the shaft, as opposed to the use of a set screw, which can score the shaft, creating burrs that make blower-pulley removal difficult.

Also inside the blower compartment are the optional low-ambient controls (16). The optional low-ambient controls allow for operation of the compressors down to 0 degrees ambient temperature by cycling the outdoor fans on high pressure. The freeze sensor protects the compressor if the evaporator coil gets too cold (below freezing) due to low airflow, and allows monitoring of the suction line temperature on the controller display. The sensor clips on the suction line near the evaporator outlet.



Inside the blower compartment the interlaced evaporator can also be viewed. The evaporator uses enhanced fin technology for maximum heat transfer. The TXV metering device assures even distribution of refrigerant throughout the evaporator.

Wiring throughout the unit is neatly bundled and routed. Where wire harnesses go through the condenser bulkhead or blower deck, a molded wire harness assembly (17) provides an air-tight and water-tight seal, and provides strain relief. Care is also taken to tuck raw edges of insulation behind sheet metal to improve indoor air quality.

The heating compartment contains the latest electric furnace technology on the market. The 100% efficient electric furnace can be factory-installed or easily field-installed. Built with ease-of-installation in mind, the electric furnace is completely wired up for slide-in, plug-and-play installation in the field. With choices of up to four kilowatt offerings, the contractor is assured to get the correct amount of heating output to meet the designed heating load.

Power hook-up in the field is easy with single-point wiring to a terminal block (18) and a polarized plug for the low-voltage connection (19). The electric furnace comes with fuses for the unit (20) and for the electric furnace (21), and is UL certified (22). The electric heating elements are of a wound-wire construction (23) and isolated with ceramic bushings. The limit switch (24) protects the design from over-temperature conditions.

The compressor compartment houses the heartbeat of the unit. The scroll compressor (25) is known for its long life, and for reliable, quiet, and efficient operation. The suction and discharge lines are designed with shock loops (26) to absorb the strain and stress that the starting torque, steady state operation, and shut down cycle impose on the refrigerant tubing. Each compressor and circuit is independent for built-in redundancy, and each circuit is clearly marked throughout the system. Each unit has two stages of efficient cooling operation, first stage is approximately 50% of second stage.

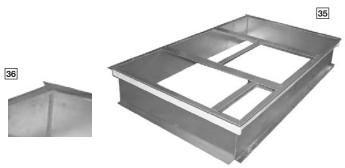
In the outdoor section are the external gauge ports (27). With the gauge ports mounted externally, an accurate diagnosis of system operation can be performed quickly and easily. Also located in this area are the refrigerant safety devices: the low-pressure switches (28) and the high-pressure switches. (29) The high-pressure switches will shut off the compressors if pressures exceeding 610 psig are detected as may occur if the outdoor fan motor fails. The low pressure switches shut off the compressors if low pressure is detected due to loss of refrigerant charge. The factory-installed high and low pressure switches are brazed into the appropriate high or low side and wired appropriately.

Each unit comes standard with filter dryer (30). The condenser fan motor (31) can easily be accessed and maintained by removing the protective fan grille. The polarized plug connection allows the motor to be changed quickly and eliminates the need to snake wires through the unit.

The outdoor coil uses the latest enhanced fin design (32) for the most effective method of heat transfer. The outdoor coil is slanted to protect the unit from Mother Nature.

Each unit is designed for both downflow or horizontal applications (33) for job configuration flexibility. The return air compartment can also contain an economizer (34). Three models exist; two for downflow applications, and one for horizontal applications. (A downflow economizer with factory installed smoke detector in the return section is available). Each unit is pre-wired for the economizer to allow quick plug-in installation. The downflow economizer is also available as a factory-installed option. The economizer, which provides free cooling when outdoor conditions are suitable and also provides fresh air to meet local requirements, comes standard with single enthalpy controls. The controls can be

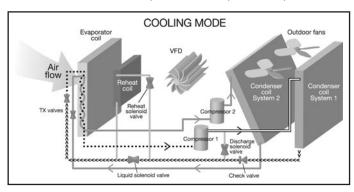
upgraded to dual enthalpy easily in the field. The direct drive actuator combined with gear drive dampers has eliminated the need for linkage adjustment in the field. The economizer control has a minimum position setpoint, an outdoor-air setpoint, a



mix-air setpoint, and a CO_2 setpoint. Barometric relief is standard on all economizers. Power Exhaust is easily field-installed. The power exhaust is housed in the barometric relief opening and is easily slipped in with a plug-in assembly. The wire harness to the economizer also has accommodations for a smoke detector.

The damper minimum position, actual damper position, power exhaust on/off setpoint, mixed air temperature limit setpoint and Demand Controlled Ventilation (DCV) setpoint can be read and adjusted at the unit controller display or remotely through a network connection.

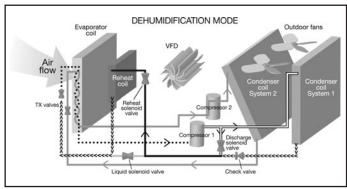
The Space CO₂ level, mixed air temperature, and Economizer Status (Free Cooling Available, Single or Dual Enthalpy) can be read at the unit controller display or remotely through a network connection. Economizer Faults will trigger a network Alarm and can be read at the unit controller display or remotely through a network connection.


The Friedrich® roofcurb (③5) is made for toolless assembly at the jobsite by inserting a pin into the hinged corners (③6), which makes the assembly process quick and easy.

HumidiDry™ System Features

HumidiDry™ is Friedrich®'s exclusive dehumidification packaged unit solution. It delivers maximum humidity control without compromising desired temperature set point for a high degree of comfort. HumidiDry™ maintains humidity levels at a desired set point when there's little or no demand for air conditioning. The HumidiDrv[™] rooftop unit is controlled by a thermostat and humidistat. The thermostat takes priority on single-stage system. When the thermostat is activated by temperatures that exceed it set point, HumidiDry™ operates like a standard rooftop unit. It can operate on first stage cooling when demand is low or at full capacity when air conditioning load is high. Unlike other rooftop or reheat units, HumidiDry™ is uniquely designed so the VFD will operate at a low speed, increasing moisture removal during first-stage cooling operation. This provides initial defense for controlling humidity. When temperature is desirable but humidity exceeds the humidistat set point, the HumidiDry™ rooftop unit initiates a dehumidification cycle using a combination of hot gas and sub-cooled liquid reheat and the VFD operates at low speed. During this cycle, the HumidiDry™ rooftop unit delivers dry, neutral air. On a two-stage system, it is possible for both a thermostat and humidistat to register readings above set point. Under this condition, the first-stage system runs in the dehumidification cycle, the second-stage system runs in a cooling cycle and the VFD operates on high speed. This provides dry conditioned air.

Figure 1 shows the refrigerant path during the normal cooling mode. The liquid refrigerant leaves the TXV with the sudden pressure drop causing the liquid to expand to a vapor and absorbing the heat from the supply air going through the evaporator coil. The refrigerant vapor then travels to the compressor where it is elevated to a higher pressure and temperature. The superheated refrigerant vapor next carries the heat to the outside coil where the heat is then rejected and the refrigerant condenses into a subcooled liquid where the process repeats itself.

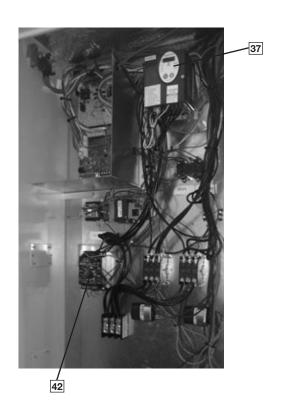


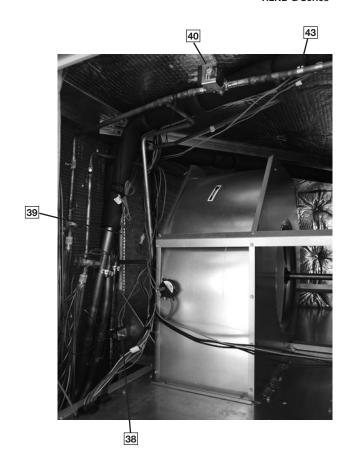
HIGH TEMPERATURE VAPOR

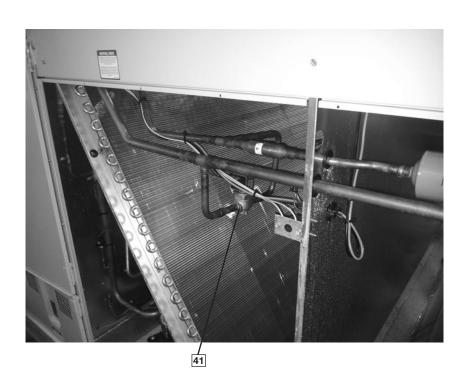
TWO PHASE (LIQUID VAPOR MIX)

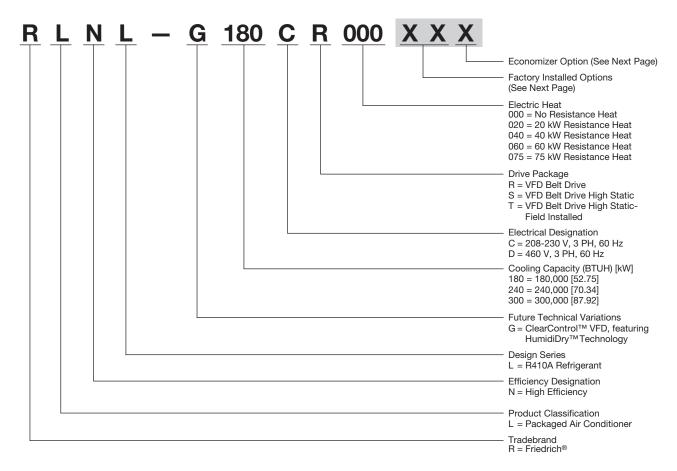
Figure 1

Figure 2 shows the refrigerant path during the reheat mode. When the reheat cycle is energized by the RTU-C, the reheat solenoid valve, upstream of the reheat coil opens. The liquid solenoid valve ahead of the TXV, closes. The discharge solenoid valve, in the compressor discharge line, opens. The liquid refrigerant leaves the TXV with the sudden pressure drop causing the liquid to expand to a vapor and absorbing the heat from the supply air going through the evaporator coil. The refrigerant vapor then travels to the compressor where it is elevated to a higher pressure and temperature. The refrigerant next carries the heat to a parallel path between the outside condenser coil and a bypass circuit. Some of the heat is rejected outdoor. The ratio of heat rejected outdoors versus indoors is controlled by an outdoor fan motor controller (OFMC) that monitors the two-phase temperature and varies the fan speed. This 2-phase refrigerant vapor is then sent to the reheat coil. As the refrigerant travels through the reheat coil it condenses into a subcooled liquid where the process repeats itself.




HIGH TEMPERATURE VAPOR


TWO PHASE (LIQUID VAPOR MIX)


LOW TEMPERATURE VAPOR

<<<<< LIQUID

FACTORY INSTALLED OPTION CODES FOR RLNL-G (15-25 TON) [52.8-87.9 kW]

Option Code	Hail Guard	Non-Powered Convenience Outlet	Low Ambient/ Comfort Alert
AA		NO OPTIONS	
AD	х		
AG		x	
AR			Х
JD	x		Х
BJ	X	X	
JE		X	Х
CZ	х	X	X

Example: RLNL-G180CL000XXXX (where XX is factory installed option)

Example: No Options

RLNL-G180CR000AAK

Example: No Options with factory installed economizer

RLNL-G180CR000AAM

Example: Options with low ambient/comfort alert and no factory installed economizer

RLNL-G180CR000ARK

Example: Options same as above with factory installed economizer

RLNL-G180CR000ARM

ECONOMIZER SELECTION FOR RLNL-G (15-25 TON) [52.8-87.9 kW]

	Option Code	Reheat Only	DDC Single Enthalpy Economizer * With Barometric Relief and Reheat	DDC Single Enthalpy Ecnomizer* With Barometric Relief and Smoke Detector and Reheat
Г	K	х		
	M		X	
	N			Х

[&]quot;x" indicates factory installed option.

Instructions for Factory Installed Option(s) Selection

Note: Three characters following the model number will be utilized to designate a factory-installed option or combination of options. If no factory option(s) is required, nothing follows the model number.

Step 1. After a basic rooftop model is selected, choose a *two-character* option code from the FACTORY INSTALLED OPTION SELECTION TABLE.

Proceed to Step 2.

Step 2. The last option code character is utilized for factory-installed economizers. Choose a character from the FACTORY INSTALLED ECONOMIZER SELECTION TABLE.

^{*}Downflow economizer only.

To select an RLNL-G Cooling and Heating unit to meet a job requirement, follow this procedure, with example, using data supplied in this specification sheet.

1. DETERMINE COOLING AND HEATING REQUIREMENTS AND SPECIFIC OPERATING CONDITIONS FROM PLANS AND SPECS.

Example:

Voltage-240 V - 3 Phase - 60 Hz Total Cooling Capacity-205,000 BTUH [60.0 kW] 155,000 BTUH [45.4 kW] Sensible Cooling Capacity— Heating Capacity-235,000 BTUH [68.8 kW] *Condenser Entering Air-95°F [35°C] DB *Evaporator Mixed Air Entering-· 65°F [18.3] WB; 78°F [25.6] DB 7200 CFM [3398 L/s] *Indoor Air Flow (vertical)— *External Static Pressure— 0.70 in. WG [.17 kPa]

2. SELECT UNIT TO MEET COOLING REQUIREMENTS.

Since total cooling is within the range of a nominal 20 ton [70.3 kW] unit, enter cooling performance table at 95°F [35.0 °C] DB condenser inlet air. Interpolate between 63°F [17.2 °C] WB and 67°F [19.4 °C] WB to determine total and sensible capacity and power input for 65°F [18.3 °C] WB evaporator inlet air at 7725 CFM [3645 L/s] indoor air flow (table basis):

Total Cooling Capacity = 238,300 BTUH [69.76 kW] Sensible Cooling Capacity = 192,500 BTUH [56.38 kW] Power Input (Compressor and Cond. Fans) = 18,200 watts

Use formula in note ① to determine sensible capacity at 78°F [25.6] DB evaporator entering air:

 $192,550 + (1.10 \times 7,200 \times (1 - 0.11) \times (78 - 80))$

Sensible Cooling Capacity = 178,452 BTUH [52.25 kW]

3. CORRECT CAPACITIES OF STEP 2 FOR ACTUAL AIR FLOW.

Select factors from airflow correction table at 7200 CFM [3398 L/s] and apply to data obtained in step 2 to obtain gross capacity:

Total Capacity = $238,300 \times .99 = 235,868$ BTUH [69.06 kW] Sensible Capacity = $178,452 \times 0.96 = 171,314$ BTUH [50.16 kW] Power Input = $18,200 \times 0.99 = 18,018$ Watts

These are Gross Capacities, not corrected for blower motor heat or power.

4. DETERMINE BLOWER SPEED AND WATTS TO MEET SYSTEM DESIGN.

Enter Indoor Blower performance table at 7200 CFM [3398 L/s]. Total ESP (external static pressure) per the spec of 0.70 in. WG [.17 kPa] includes the system duct and grilles. Add from the table 'Component Air Resistance', 0.01 in. WG [.00 kPa] for wet coil, 0.08 in. WG [.02 kPa] for downflow air flow, for a total selection static pressure of 0.79 (0.8) in. WG [.20 kPa], and determine:

RPM = 739 WATTS = 2,862 DRIVE = L (standard 5 H.P. motor)

5. CALCULATE INDOOR BLOWER BTUH HEAT EFFECT FROM MOTOR WATTS, STEP 4.

2,862 x 3.412 = 9,765 BTUH [2.86 kW]

6. CALCULATE NET COOLING CAPACITIES, EQUAL TO GROSS CAPACITY, STEP 3, MINUS INDOOR BLOWER MOTOR HEAT.

Net Total Capacity = 235,868 - 9,765 = 226,103 BTUH [66.21 kW]

Net Sensible Capacity = 171,314 - 9,765 = 161,549 BTUH [47.30 kW]

7. CALCULATE UNIT INPUT AND JOB EER.

Total Power Input = 18,018 (step 3) + 2,862 (step 4) = 20,880 Watts

 $EER = \frac{\text{Net Total BTUH [kW] (step 6)}}{\text{Power Input, Watts (above)}} = \frac{226,103}{20,880} = 10.83$

8. SELECT UNIT HEATING CAPACITY.

From Heater Kit Table select kW to meet heating capacity requirement; multiply kW x 3412 to convert to BTUH

Use 75 kW Heater Kit

Heater Kit Model: RXJJ-CE75C

Heater Kit Capacity: 245,323 BTUH [71.8 kW]

Add indoor blower heat effect (step 5) to Heater Kit Capacity to get total heating capacity:

245,323 + 9,765 = 255,088 BTUH [74.7 kW]

9. CHOOSE MODEL RLNL-G240CR075

*NOTE: These operating conditions are typical of a commercial application in a 95°F/79°F [35°C/26°C] design area with indoor design of 76°F [24°C] DB and 50% RH and 10% ventilation air, with the unit roof mounted and centered on the zone it conditions by ducts.

NOM. SIZES 15-25 TONS [52.8-87.9 kW] MODELS

Model RLNL- Series	G180CR	G180CS	G180DR	G180DS
Cooling Performance ^A				CONTINUED
Gross Cooling Capacity Btu [kW]	188,000 [53.47]	188,000 [53.47]	188,000 [53.47]	188,000 [53.47]
EER	11	11	11	11
IEER B	14.2	14.2	14.2	14.2
Nominal CFM/AHRI Rated CFM [L/s]	6000/5900 [2831/2784]	6000/5900 [2831/2784]	6000/5900 [2831/2784]	6000/5900 [2831/2784]
AHRI Net Cooling Capacity Btu [kW]	172,000 [48.92]	172,000 [48.92]	172,000 [48.92]	172,000 [48.92]
Net Sensible Capacity Btu [kW]	125700 [35.75]	125700 [35.75]	125700 [35.75]	125700 [35.75]
Net Latent Capacity Btu [kW]	46300 [13.17]	46300 [13.17]	46300 [13.17]	46300 [13.17]
Net System Power [kW]	15.64	15.64	15.64	15.64
Compressor				2/Scroll
No./Type	2/Scroll	2/Scroll	2/Scroll	91
Outdoor Sound Rating (dB) ^C	91	91	91	Louvered
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Rifled
Tube Type	Rifled	Rifled	Rifled	0.375 [9.5]
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	53.3 [4.95]
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	1 / 22 [9]
Rows / FPI [FPcm]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]	Louvered
ndoor Coil—Fin Type	Louvered	Louvered	Louvered	Rifled
Tube Type	Rifled	Rifled	Rifled	0.375 [9.5]
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	26.67 [2.48]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	2 / 18 [7]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	TX Valves
Refrigerant Control	TX Valves	TX Valves	TX Valves	1/1 [25.4]
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	Louvered
e-Heat Coil—Fin Type	Louvered	Louvered	Louvered	MicroChannel
Tube Type	MicroChannel	MicroChannel	MicroChannel	0.709 [18]
MicroChannel Depth in. [mm]	0.709 [18]	0.709 [18]	0.709 [18]	19.9 [1.85]
Face Area sq. ft. [sq. m]	19.9 [1.85]	19.9 [1.85]	19.9 [1.85]	1 / 23 [9]
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	Propeller
Outdoor Fan—Type	Propeller	Propeller	Propeller	4/24 [609.6]
No. Used/Diameter in. [mm]	4/24 [609.6]	4/24 [609.6]	4/24 [609.6]	Direct/1
Drive Type/No. Speeds	4/24 [003.0] Direct/1	4/24 [003.0] Direct/1	4,24 [003.0] Direct/1	16000 [7550]
CFM [L/s]	16000 [7550]	16000 [7550]	16000 [7550]	4 at 1/3 HP
No. Motors/HP	4 at 1/3 HP	4 at 1/3 HP	4 at 1/3 HP	1075
Motor RPM	1075	1075	1075	FC Centrifugal
ndoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	2/18x9 [457x229]
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	Belt (Adjustable)
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Multiple
No. Speeds	Multiple	Multiple	Multiple	1 Niuitipie
No. Motors	iviuitipie 1	ividitiple 1	ividitiple 1	3
	5	3	1 5	3 1725
Motor HP	1725	ა 1725	1725	56
Motor RPM	184	56	184	Disposable
Motor Frame Size				<u>'</u>
ilter—Type	Disposable	Disposable	Disposable	Yes (8)2y25y20 [51y625y509]
Furnished	Yes	Yes	Yes (9)2005000 [5106250608]	(8)2x25x20 [51x635x508]
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	299/211 [8477/5982]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	299/211 [8477/5982]	299/211 [8477/5982]	299/211 [8477/5982]	4000 [005]
Weights	4005 50703	4000 (005)	4005 (070)	1906 [865]
Net Weight lbs. [kg]	1935 [878]	1906 [865]	1935 [878]	2032 [922]
Ship Weight lbs. [kg]	2061 [935]	2032 [922]	2061 [935]	

See Page 16 for Notes.

NOM. SIZES 15-25 TONS [52.8-87.9 kW] MODELS

Model RLNL- Series	G240CR	G240CS	G240DR	G240DS
Cooling Performance ^A				CONTINUED
Gross Cooling Capacity Btu [kW]	244,000 [69.40]	244,000 [69.40]	244,000 [69.40]	244,000 [69.40]
EER	11	11	11	11
IEER ^B	14.2	14.2	14.2	14.2
Nominal CFM/AHRI Rated CFM [L/s]	8000/7725 [3775/3645]	8000/7725 [3775/3645]	8000/7725 [3775/3645]	8000/7725 [3775/3645]
AHRI Net Cooling Capacity Btu [kW]	228,000 [64.85]	228,000 [64.85]	228,000 [64.85]	228,000 [64.85]
Net Sensible Capacity Btu [kW]	165,600 [47.10]	165,600 [47.10]	165,600 [47.10]	165,600 [47.10]
Net Latent Capacity Btu [kW]	62,400 [17.75]	62,400 [17.75]	62,400 [17.75]	62,400 [17.75]
Net System Power [kW]	20.73	20.73	20.73	20.73
ompressor				
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
utdoor Sound Rating (dB) ^c	91	91	91	91
utdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
idoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	3 / 13 [5]	3 / 13 [5]	3 / 13 [5]	3 / 13 [5]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
e-Heat Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]	0.709 [18]	0.709 [18]	0.709 [18]	0.709 [18]
Face Area sq. ft. [sq. m]	19.9 [1.85]	19.9 [1.85]	19.9 [1.85]	19.9 [1.85]
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]
utdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	19800 [9344]	19800 [9344]	19800 [9344]	19800 [9344]
No. Motors/HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP
Motor RPM	1075	1075	1075	1075
ndoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds	Multiple	Multiple	Multiple	Multiple
No. Motors	1	1	1	1
Motor HP	5	7 1/2	5	7 1/2
Motor RPM	1725	1725	1725	1725
Motor Frame Size	184	213	184	184
ilter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	430/331 [12190/9384]	430/331 [12190/9384]	430/331 [12190/9384]	430/331 [12190/9384]
Veights	[]	[.=	[]	
Net Weight lbs. [kg]	2231 [1012]	2269 [1029]	2231 [1012]	2269 [1029]
Ship Weight lbs. [kg]	2357 [1069]	2395 [1086]	2357 [1069]	2395 [1086]
See Page 16 for Notes	200. [1000]	2000 [1000]		nates Metric Conversio

See Page 16 for Notes.

NOM. SIZES 15-25 TONS [52.8-87.9 kW] MODELS

Model RLNL- Series	G300CR	G300CS	G300DR	G300DS
Cooling Performance ^A				CONTINUED
Gross Cooling Capacity Btu [kW]	312,000 [88.74]	312,000 [88.74]	312,000 [88.74]	312,000 [88.74]
EER	10	10	10	10
IEER B	13	13	13	13
Nominal CFM/AHRI Rated CFM [L/s]	10000/9700 [4719/4577]	10000/9700 [4719/4577]	10000/9700 [4719/4577]	10000/9700 [4719/4577]
AHRI Net Cooling Capacity Btu [kW]	290,000 [84.49]	290,000 [84.49]	290,000 [84.49]	290,000 [84.49]
Net Sensible Capacity Btu [kW]	208900 [61.22]	208900 [61.22]	208900 [61.22]	208900 [61.22]
Net Latent Capacity Btu [kW]	81,100 [23.76]	81,100 [23.76]	81,100 [23.76]	81,100 [23.76]
Net System Power [kW]	29	29	29	29
Compressor				
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ^C	91	91	91	91
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
ndoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Re-Heat Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
	MicroChannel	MicroChannel	MicroChannel	MicroChannel
Tube Type				
MicroChannel Depth in. [mm]	0.709 [18]	0.709 [18]	0.709 [18]	0.709 [18]
Face Area sq. ft. [sq. m]	19.9 [1.85]	19.9 [1.85]	19.9 [1.85]	19.9 [1.85]
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	19800 [9344]	19800 [9344]	19800 [9344]	19800 [9344]
No. Motors/HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP
Motor RPM	1075	1075	1075	1075
ndoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds	Multiple	Multiple	Multiple	Multiple
No. Motors	1	1	1	1
Motor HP	7 1/2	10	7 1/2	10
Motor RPM	1725	1725	1725	1725
Motor Frame Size	213	215	213	215
ilter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	464/357 [13154/10121]	464/357 [13154/10121]	464/357 [13154/10121]	464/357 [13154/10121]
Veights				
Net Weight Ibs. [kg]	2330 [1057]	2341 [1062]	2330 [1057]	2341 [1062]
Ship Weight lbs. [kg]	2456 [1114]	2467 [1119]	2456 [1114]	2467 [1119]
See Page 16 for Notes.		-		nates Metric Conversio

See Page 16 for Notes. [] Designates Metric Conversions

NOTES:

- A. Cooling Performance is rated at 95° F ambient, 80° F entering dry bulb, 67° F entering wet bulb. Gross capacity does not include the effect of fan motor heat. AHRI capacity is net and includes the effect of fan motor heat. Units are suitable for operation to ±20% of nominal cfm. Units are certified in accordance with the Unitary Air Conditioner Equipment certification program, which is based on AHRI Standard 210/240 or 360.
- B. EER and Integrated Energy Efficiency Ratio (IEER) are rated at AHRI conditions in accordance with AHRI Standard 340/360.
- C. Outdoor Sound Rating shown is tested in accordance with AHRI Standard 270.
- [] Designates Metric Conversions

GROSS SYSTEMS PERFORMANCE DATA-G180

	ENTERING INDOOR AIR @ 80°F [26.7°C] dbe ①										
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		FM [L/s]	7200 [3398]	5900 [2784]	4800 [2265]	7200 [3398]	5900 [2784]	4800 [2265]	7200 [3398]	5900 [2784]	4800 [2265]
		DR ①	.12	.08	.04	.12	.08	.04	.12	.08	.04
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	229.8 [67.3] 134.3 [39.4] 12.6	220.9 [64.7] 121.8 [35.7] 12.3	213.5 [62.5] 111.2 [32.6] 12.1	214.3 [62.8] 165.1 [48.4] 12.4	206 [60.4] 149.7 [43.9] 12.2	199 [58.3] 136.7 [40.1] 12.0	205.3 [60.1] 189.9 [55.6] 12.2	197.4 [57.8] 172.2 [50.5] 12.0	190.7 [55.9] 157.2 [46.1] 11.8
	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	225.5 [66.1] 132.1 [38.7] 13.2	216.8 [63.5] 119.8 [35.1] 12.9	209.4 [61.4] 109.4 [32.1] 12.7	209.9 [61.5] 163 [47.8] 13.0	201.9 [59.2] 147.8 [43.3] 12.7	195 [57.1] 134.9 [39.5] 12.5	200.9 [58.9] 187.7 [55] 12.8	193.2 [56.6] 170.2 [49.9] 12.6	186.7 [54.7] 155.4 [45.5] 12.4
ÜTDO	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	220.8 [64.7] 129.8 [38.1] 13.8	212.3 [62.2] 117.7 [34.5] 13.5	205.1 [60.1] 107.5 [31.5] 13.3	205.3 [60.2] 160.7 [47.1] 13.6	197.4 [57.8] 145.7 [42.7] 13.4	190.7 [55.9] 133 [39] 13.1	196.3 [57.5] 185.4 [54.3] 13.4	188.7 [55.3] 168.1 [49.3] 13.2	182.3 [53.4] 153.5 [45] 13.0
O R D	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	215.8 [63.2] 127.4 [37.3] 14.5	207.5 [60.8] 115.5 [33.9] 14.2	200.4 [58.7] 105.5 [30.9] 14.0	200.3 [58.7] 158.2 [46.4] 14.3	192.5 [56.4] 143.5 [42] 14.0	186 [54.5] 131 [38.4] 13.8	191.3 [56] 183 [53.6] 14.1	183.9 [53.9] 165.9 [48.6] 13.9	177.7 [52.1] 151.5 [44.4] 13.6
R Y B U	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	210.4 [61.7] 124.8 [36.6] 15.2	202.3 [59.3] 113.2 [33.2] 14.9	195.5 [57.3] 103.3 [30.3] 14.7	194.9 [57.1] 155.6 [45.6] 15.1	187.4 [54.9] 141.1 [41.3] 14.8	181 [53.1] 128.8 [37.7] 14.5	185.9 [54.5] 180.4 [52.9] 14.9	178.7 [52.4] 163.6 [47.9] 14.6	172.7 [50.6] 149.3 [43.8] 14.4
B T	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	204.7 [60] 122 [35.8] 16.0	196.9 [57.7] 110.7 [32.4] 15.7	190.2 [55.7] 101 [29.6] 15.5	189.2 [55.4] 152.9 [44.8] 15.8	181.9 [53.3] 138.6 [40.6] 15.5	175.8 [51.5] 126.5 [37.1] 15.3	180.2 [52.8] 177.6 [52] 15.7	173.3 [50.8] 161.1 [47.2] 15.4	167.4 [49.1] 147 [43.1] 15.1
E M P E	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	198.7 [58.2] 119.1 [34.9] 16.9	191 [56] 108 [31.7] 16.5	184.6 [54.1] 98.6 [28.9] 16.3	183.2 [53.7] 149.9 [43.9] 16.7	176.1 [51.6] 136 [39.8] 16.4	170.1 [49.9] 124.1 [36.4] 16.1	174.2 [51] 174.2 [51] 16.5	167.5 [49.1] 158.4 [46.4] 16.2	161.8 [47.4] 144.6 [42.4] 15.9
R A T U	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	192.3 [56.4] 116.1 [34] 17.8	184.9 [54.2] 105.2 [30.8] 17.4	178.6 [52.3] 96.1 [28.2] 17.1	176.8 [51.8] 146.9 [43] 17.6	170 [49.8] 133.2 [39] 17.3	164.2 [48.1] 121.6 [35.6] 17.0	167.8 [49.2] 167.8 [49.2] 17.4	161.3 [47.3] 155.6 [45.6] 17.1	155.8 [45.7] 142.1 [41.6] 16.8
R E °F [°C]	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	185.6 [54.4] 112.9 [33.1] 18.7	178.4 [52.3] 102.3 [30] 18.4	172.4 [50.5] 93.4 [27.4] 18.1	170 [49.8] 143.7 [42.1] 18.5	163.5 [47.9] 130.3 [38.2] 18.2	158 [46.3] 118.9 [34.9] 17.9	161 [47.2] 161 [47.2] 18.4	154.8 [45.4] 152.7 [44.8] 18.0	149.6 [43.8] 139.4 [40.9] 17.7
	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	178.5 [52.3] 109.5 [32.1] 19.7	171.6 [50.3] 99.3 [29.1] 19.3	165.8 [48.6] 90.6 [26.6] 19.0	163 [47.8] 140.3 [41.1] 19.5	156.7 [45.9] 127.2 [37.3] 19.2	151.4 [44.4] 116.2 [34] 18.9	154 [45.1] 154 [45.1] 19.4	148 [43.4] 148 [43.4] 19.0	143 [41.9] 136.7 [40] 18.7
	125 [51.7]	Total BTUH [kW] Sens BTUH [kW] Power	171.1 [50.1] 106 [31.1] 20.8	164.5 [48.2] 96.1 [28.2] 20.4	158.9 [46.6] 87.7 [25.7] 20.0	155.5 [45.6] 136.8 [40.1] 20.6	149.6 [43.8] 124 [36.3] 20.2	144.5 [42.3] 113.2 [33.2] 19.9	146.5 [42.9] 146.5 [42.9] 20.4	140.9 [41.3] 140.9 [41.3] 20.0	136.1 [39.9] 133.7 [39.2] 19.7

DR —Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb

Total —Total capacity x 1000 BTUH Sens —Sensible capacity x 1000 BTUH Power —KW input

NOTES: ① When the entering air dry bulb is other than $80^{\circ}F$ [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

GROSS SYSTEMS PERFORMANCE DATA-G240

ENTERING INDOOR AIR @ 80°F [26.7°C] dbE ①											
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		M [L/s]	7200 [3398]	5900 [2784]	4800 [2265]	7200 [3398]	5900 [2784]	4800 [2265]	7200 [3398]	5900 [2784]	4800 [2265]
		DR ①	.12	.08	.04	.12	.08	.04	.12	.08	.04
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	286.7 [84] 167.1 [49] 15.5	274.6 [80.5] 150.1 [44] 15.1	266 [78] 138.1 [40.5] 14.9	269.6 [79] 208 [61] 15.3	258.2 [75.7] 186.8 [54.8] 15	250.1 [73.3] 171.9 [50.4] 14.7	257.6 [75.5] 240.7 [70.5] 15.1	246.7 [72.3] 216.2 [63.4] 14.8	239 [70] 198.9 [58.3] 14.5
	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	284.1 [83.3] 166.1 [48.7] 16.2	272.1 [79.7] 149.2 [43.7] 15.9	263.6 [77.3] 137.3 [40.2] 15.6	267 [78.2] 207 [60.7] 16	255.7 [74.9] 186 [54.5] 15.7	247.7 [72.6] 171.1 [50.1] 15.5	255 [74.7] 239.7 [70.2] 15.9	244.2 [71.6] 215.3 [63.1] 15.5	236.6 [69.3] 198.1 [58.1] 15.3
U T D O	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	280.7 [82.3] 164.7 [48.3] 17.1	268.8 [78.8] 147.9 [43.4] 16.7	260.5 [76.3] 136.1 [39.9] 16.4	263.6 [77.2] 205.6 [60.3] 16.9	252.4 [74] 184.7 [54.1] 16.5	244.6 [71.7] 169.9 [49.8] 16.3	251.6 [73.7] 238.3 [69.8] 16.7	241 [70.6] 214.1 [62.7] 16.3	233.4 [68.4] 196.9 [57.7] 16.1
O R D	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	276.4 [81] 162.9 [47.7] 17.9	264.8 [77.6] 146.3 [42.9] 17.5	256.5 [75.2] 134.6 [39.4] 17.3	259.3 [76] 203.8 [59.7] 17.7	248.3 [72.8] 183.1 [53.7] 17.4	240.6 [70.5] 168.4 [49.4] 17.1	247.3 [72.5] 236.5 [69.3] 17.5	236.9 [69.4] 212.4 [62.3] 17.2	229.5 [67.3] 195.4 [57.3] 16.9
R Y B U	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	271.4 [79.5] 160.7 [47.1] 18.8	259.9 [76.2] 144.3 [42.3] 18.5	251.8 [73.8] 132.8 [38.9] 18.2	254.2 [74.5] 201.6 [59.1] 18.7	243.5 [71.3] 181.1 [53.1] 18.3	235.9 [69.1] 166.6 [48.8] 18	242.2 [71] 234.3 [68.7] 18.5	232 [68] 210.4 [61.7] 18.1	224.8 [65.9] 193.6 [56.7] 17.8
B T	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	265.4 [77.8] 158 [46.3] 19.8	254.2 [74.5] 141.9 [41.6] 19.4	246.3 [72.2] 130.6 [38.3] 19.1	248.3 [72.8] 198.9 [58.3] 19.6	237.8 [69.7] 178.7 [52.4] 19.2	230.4 [67.5] 164.4 [48.2] 18.9	236.3 [69.3] 231.6 [67.9] 19.4	226.3 [66.3] 208.1 [61] 19.0	219.3 [64.3] 191.4 [56.1] 18.7
E M P E	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	258.7 [75.8] 154.9 [45.4] 20.8	247.8 [72.6] 139.2 [40.8] 20.4	240 [70.3] 128 [37.5] 20.1	241.6 [70.8] 195.8 [57.4] 20.7	231.3 [67.8] 175.9 [51.6] 20.2	224.1 [65.7] 161.8 [47.4] 19.9	229.6 [67.3] 228.5 [67] 20.5	219.9 [64.4] 205.3 [60.2] 20.0	213 [62.4] 188.9 [55.3] 19.7
R A T U	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	251.1 [73.6] 151.4 [44.4] 21.9	240.5 [70.5] 136 [39.9] 21.5	233 [68.3] 125.1 [36.7] 21.1	234 [68.6] 192.3 [56.4] 21.7	224.1 [65.7] 172.8 [50.6] 21.3	217.1 [63.6] 158.9 [46.6] 21.0	222 [65.1] 222 [65.1] 21.5	212.6 [62.3] 202.1 [59.2] 21.1	206 [60.4] 186 [54.5] 20.8
°F I°C1	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	242.7 [71.1] 147.5 [43.2] 23.1	232.5 [68.1] 132.5 [38.8] 22.6	225.2 [66] 121.9 [35.7] 22.2	225.6 [66.1] 188.4 [55.2] 22.9	216 [63.3] 169.3 [49.6] 22.4	209.3 [61.3] 155.7 [45.6] 22.0	213.6 [62.6] 213.6 [62.6] 22.7	204.6 [60] 198.6 [58.2] 22.2	198.2 [58.1] 182.7 [53.5] 21.9
	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	233.5 [68.4] 143.2 [41.9] 24.2	223.6 [65.5] 128.6 [37.7] 23.7	216.6 [63.5] 118.3 [34.7] 23.4	216.3 [63.4] 184.1 [53.9] 24.0	207.2 [60.7] 165.4 [48.5] 23.5	200.7 [58.8] 152.1 [44.6] 23.2	204.4 [59.9] 204.4 [59.9] 23.9	195.7 [57.4] 194.7 [57.1] 23.4	189.6 [55.6] 179.1 [52.5] 23.0
	125 [51.7]	Total BTUH [kW] Sens BTUH [kW] Power	223.4 [65.5] 138.4 [40.6] 25.5	214 [62.7] 124.3 [36.4] 24.9	207.3 [60.7] 114.4 [33.5] 24.69	206.3 [60.4] 179.3 [52.5] 25.3	197.6 [57.9] 161.1 [47.2] 24.8	191.4 [56.1] 148.2 [43.4] 24.4	194.3 [56.9] 194.3 [56.9] 25.1	186.1 [54.5] 186.1 [54.5] 24.6	180.3 [52.8] 175.2 [51.3] 24.2

DR —Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb

Total —Total capacity x 1000 BTUH
Sens —Sensible capacity x 1000 BTUH
Power —KW input

NOTES: ① When the entering air dry bulb is other than $80^{\circ}F$ [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

GROSS SYSTEMS PERFORMANCE DATA-G300

	ENTERING INDOOR AIR @ 80°F [26.7°C] dbE ①										
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		-M [L/s]	10615 [5010]	9650 [4554]	8202 [3871]	10615 [5010]	9650 [4554]	8202 [3871]	10615 [5010]	9650 [4554]	8202 [3871]
<u> </u>		DR ①	.13	.11	.08	.13	.11	.08	.13	.11	.08
	75 [23.9]	Sens BTUH [kW] Power	21.3	337.4 [98.9] 196.5 [57.6] 21.2	328.2 [96.2] 182.7 [53.5] 20.9	326.8 [95.8] 244.1 [71.5] 21.2	321 [94.1] 233.3 [68.4] 21.0	312.2 [91.5] 216.9 [63.6] 20.7	315.2 [92.4] 274.9 [80.5] 21.0	309.5 [90.7] 262.6 [77] 20.8	301.1 [88.2] 244.2 [71.6] 20.5
	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power		334.9 [98.1] 195.6 [57.3] 21.9	325.8 [95.5] 181.9 [53.3] 21.6	324.3 [95] 243.2 [71.3] 21.9	318.5 [93.3] 232.4 [68.1] 21.7	309.8 [90.8] 216.1 [63.3] 21.4	312.6 [91.6] 274 [80.3] 21.7	307 [90] 261.7 [76.7] 21.5	298.7 [87.5] 243.4 [71.3] 21.2
UTDO	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power		331.6 [97.2] 194.4 [57] 22.7	322.6 [94.5] 180.7 [53] 22.4	321 [94.1] 241.9 [70.9] 22.7	315.2 [92.4] 231.1 [67.7] 22.5	306.6 [89.9] 214.9 [63] 22.2	309.3 [90.6] 272.6 [79.9] 22.5	303.8 [89] 260.5 [76.3] 22.3	295.5 [86.6] 242.2 [71] 22.0
O R D	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power		327.6 [96] 192.7 [56.5] 23.6	318.6 [93.4] 179.2 [52.5] 23.2	316.8 [92.8] 240.2 [70.4] 23.6	311.1 [91.2] 229.5 [67.2] 23.4	302.7 [88.7] 213.4 [62.5] 23.1	305.1 [89.4] 270.9 [79.4] 23.4	299.7 [87.8] 258.9 [75.9] 23.2	291.5 [85.4] 240.7 [70.5] 22.9
R Y B	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power		322.7 [94.6] 190.7 [55.9] 24.5	313.9 [92] 177.4 [52] 24.1	311.8 [91.4] 238.1 [69.8] 24.5	306.3 [89.8] 227.5 [66.7] 24.3	297.9 [87.3] 211.5 [62] 24.0	300.2 [88] 268.8 [78.8] 24.3	294.8 [86.4] 256.8 [75.3] 24.1	286.8 [84] 238.9 [70] 23.8
U L B	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power		317 [92.9] 188.3 [55.2] 25.4	308.4 [90.4] 175.1 [51.3] 25.1	306.1 [89.7] 235.6 [69] 25.5	300.6 [88.1] 225.1 [66] 25.2	292.4 [85.7] 209.3 [61.3] 24.9	294.4 [86.3] 266.3 [78] 25.3	289.1 [84.7] 254.5 [74.6] 25	281.3 [82.4] 236.6 [69.3] 24.7
H M P E	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power		310.6 [91] 185.6 [54.4] 26.4	302.1 [88.5] 172.6 [50.6] 26.1	299.5 [87.8] 232.7 [68.2] 26.5	294.2 [86.2] 222.3 [65.1] 26.2	286.1 [83.8] 206.8 [60.6] 25.9	287.8 [84.3] 263.4 [77.2] 26.3	282.7 [82.8] 251.7 [73.8] 26.1	275 [80.6] 234.1 [68.6] 25.7
R A T U	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power		303.3 [88.9] 182.4 [53.5] 27.5	295 [86.5] 169.6 [49.7] 27.1	292.1 [85.6] 229.4 [67.2] 27.5	286.9 [84.1] 219.2 [64.2] 27.3	279.1 [81.8] 203.8 [59.7] 26.9	280.4 [82.2] 260.1 [76.2] 27.3	275.4 [80.7] 248.5 [72.8] 27.1	267.9 [78.5] 231.1 [67.7] 26.8
R E °F [°C]	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	300.6 [88.1] 187.2 [54.9] 28.8	295.3 [86.5] 178.9 [52.4] 28.6	287.2 [84.2] 166.4 [48.8] 28.2	283.9 [83.2] 225.7 [66.1] 28.7	278.8 [81.7] 215.7 [63.2] 28.4	271.2 [79.5] 200.6 [58.8] 28.0	272.2 [79.8] 256.5 [75.2] 28.5	267.4 [78.4] 245 [71.8] 28.2	260.1 [76.2] 227.9 [66.8] 27.8
	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	291.6 [85.5] 183.2 [53.7] 30.0	286.4 [83.9] 175 [51.3] 29.7	278.6 [81.6] 162.7 [47.7] 29.4	274.9 [80.6] 221.6 [64.9] 29.8	270 [79.1] 211.8 [62.1] 29.6	262.6 [77] 196.9 [57.7] 29.2	263.2 [77.1] 252.4 [74] 29.6	258.5 [75.8] 241.1 [70.7] 29.4	251.5 [73.7] 224.2 [65.7] 29.0
	125 [51.7]	Total BTUH [kW] Sens BTUH [kW] Power		276.8 [81.1] 170.7 [50] 31.0	269.2 [78.9] 158.8 [46.5] 30.5	265.1 [77.7] 217.2 [63.6] 31.0	260.4 [76.3] 207.5 [60.8] 30.8	253.3 [74.2] 193 [56.5] 30.4	253.4 [74.3] 247.9 [72.6] 30.9	248.9 [72.9] 236.8 [69.4] 30.6	242.1 [70.9] 220.3 [64.5] 30.2

DR —Depression ratio
dbE —Entering air dry bulb
wbE—Entering air wet bulb

Total —Total capacity x 1000 BTUH
Sens —Sensible capacity x 1000 BTUH
Power —KW input

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding $[1.10 \times CFM \times (1 - DR) \times (dbE - 80)]$.

GROSS SYSTEMS PERFORMANCE DATA (LOW REHEAT MODE)—G180

	ENTERING INDOOR AIR @ 75°F [23.9°C] dbE ①											
		wbE		65.3°F [18.5°C]			64°F [17.8°C]			62.5°F [16.9°C]		
	CI	FM [L/s]	3600 [1699]	2950 [1392]	2400 [1133]	3600 [1699]	2950 [1392]	2400 [1133]	3600 [1699]	2950 [1392]	2400 [1133]	
O U T D	60 [15.6]	Total BTUH [kW] Sens BTUH [kW] Power	49.6 [14.5] 9.0 [2.6] 5.9	47.7 [14.0] 8.1 [2.4] 5.8	46.0 [13.5] 7.4 [2.2] 5.7	46.7 [13.7] 14.1 [4.1] 5.9	44.9 [13.2] 12.8 [3.8] 5.8	43.4 [12.7] 11.7 [3.4] 5.7	45.1 [13.2] 20.6 [6.0] 5.9	43.4 [12.7] 18.6 [5.5] 5.8	41.9 [12.3] 17.0 [5.0] 5.7	
O O R	65 [18.3]	Total BTUH [kW] Sens BTUH [kW] Power	48.6 [14.2] 8.0 [2.4] 6.0	46.7 [13.7] 7.3 [2.1] 5.9	45.1 [13.2] 6.6 [1.9] 5.8	45.7 [13.4] 13.2 [3.9] 6.0	44.0 [12.9] 12.0 [3.5] 5.9	42.5 [12.5] 10.9 [3.2] 5.8	44.2 [12.9] 19.6 [5.7] 5.9	42.5 [12.4] 17.8 [5.2] 5.8	41.0 [12.0] 16.2 [4.8] 5.7	
R Y B	70 [21.1]	Total BTUH [kW] Sens BTUH [kW] Power	47.5 [13.9] 7.1 [2.1] 6.1	45.7 [13.4] 6.4 [1.9] 6.0	44.1 [12.9] 5.9 [1.7] 5.9	44.7 [13.1] 12.2 [3.6] 6.1	43.0 [12.6] 11.1 [3.3] 6.0	41.5 [12.2] 10.1 [3.0] 5.9	43.1 [12.6] 18.7 [5.5] 6.0	41.4 [12.1] 16.9 [5.0] 5.9	40.0 [11.7] 15.4 [4.5] 5.8	
B T	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	46.4 [13.6] 6.1 [1.8] 6.2	44.6 [13.1] 5.6 [1.6] 6.1	43.1 [12.6] 5.1 [1.5] 6.0	43.5 [12.8] 11.3 [3.3] 6.2	41.9 [12.3] 10.2 [3.0] 6.1	40.4 [11.9] 9.4 [2.7] 6.0	42.0 [12.3] 17.7 [5.2] 6.1	40.3 [11.8] 16.1 [4.7] 6.0	39.0 [11.4] 14.7 [4.3] 5.9	
EMPERATUR	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power		43.4 [12.7] 4.7 [1.4] 6.2	42.0 [12.3] 4.3 [1.3] 6.1	42.3 [12.4] 10.3 [3.0] 6.3	40.7 [11.9] 9.4 [2.7] 6.2	39.3 [11.5] 8.6 [2.5] 6.1	40.7 [11.9] 16.7 [4.9] 6.2	39.2 [11.5] 15.2 [4.5] 6.1	37.8 [11.1] 13.9 [4.1] 6.0	
	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	43.9 [12.9] 4.2 [1.2] 6.4	42.2 [12.4] 3.8 [1.1] 6.3	40.8 [11.9] 3.5 [1.0] 6.2	41.0 [12.0] 9.4 [2.7] 6.4	39.5 [11.6] 8.5 [2.5] 6.3	38.1 [11.2] 7.8 [2.3] 6.2	39.4 [11.6] 15.8 [4.6] 6.4	37.9 [11.1] 14.3 [4.2] 6.3	36.6 [10.7] 13.1 [3.8] 6.1	
°F [°C]	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	42.5 [12.5] 3.2 [1.0] 6.6	40.9 [12.0] 2.9 [0.9] 6.5	39.5 [11.6] 2.7 [0.8] 6.4	39.7 [11.6] 8.4 [2.5] 6.6	38.1 [11.2] 7.6 [2.2] 6.4	36.8 [10.8] 7.0 [2.0] 6.3	38.1 [11.2] 14.8 [4.3] 6.5	36.6 [10.7] 13.4 [3.9] 6.4	35.4 [10.4] 12.3 [3.6] 6.3	

GROSS SYSTEMS PERFORMANCE DATA (HIGH REHEAT MODE)-G180

				EN	NTERING INDOC	R AIR @ 75°F	[23.9°C] dbE ①)			
		wbE		65.3°F [18.5°C]			64°F [17.8°C]			62.5°F [16.9°C]	
	CI	FM [L/s]	7200 [3398]	5900 [2784]	4800 [2265]	7200 [3398]	5900 [2784]	4800 [2265]	7200 [3398]	5900 [2784]	4800 [2265]
O U T D	60 [15.6]	Total BTUH [kW] Sens BTUH [kW] Power	162.1 [47.5] 81.5 [23.9] 11.5	155.9 [45.7] 73.9 [21.7] 11.3	150.6 [44.1] 67.5 [19.8] 11.1	158.6 [46.5] 93.0 [27.3] 11.4	152.5 [44.7] 84.3 [24.7] 11.2	147.3 [43.2] 77.0 [22.6] 11.0	153.8 [45.1] 103.2 [30.2] 11.3	147.9 [43.3] 93.6 [27.4] 11.1	142.9 [41.9] 85.4 [25.0] 10.9
O O R	70 [21.1]	Total BTUH [kW] Sens BTUH [kW] Power	156.6 [45.9] 77.9 [22.8] 12.2	150.6 [44.1] 70.6 [20.7] 12.0	145.4 [42.6] 64.5 [18.9] 11.8	153.0 [44.8] 89.4 [26.2] 12.1	147.1 [43.1] 81.0 [23.7] 11.9	142.1 [41.7] 74.0 [21.7] 11.7	148.3 [43.5] 99.5 [29.2] 12.0	142.6 [41.8] 90.3 [26.5] 11.8	137.7 [40.4] 82.4 [24.1] 11.6
R Y B	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	148.4 [43.5] 71.8 [21.0] 13.0	142.6 [41.8] 65.1 [19.1] 12.8	137.8 [40.4] 59.4 [17.4] 12.6	144.8 [42.4] 83.3 [24.4] 12.9	139.2 [40.8] 75.5 [22.1] 12.7	134.5 [39.4] 68.9 [20.2] 12.5	140.1 [41.0] 93.4 [27.4] 12.8	134.7 [39.5] 84.7 [24.8] 12.6	130.1 [38.1] 77.3 [22.7] 12.4
L B T	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	137.5 [40.3] 63.2 [18.5] 13.9	132.2 [38.7] 57.3 [16.8] 13.7	127.7 [37.4] 52.3 [15.3] 13.5	133.9 [39.2] 74.7 [21.9] 13.9	128.8 [37.7] 67.7 [19.8] 13.6	124.4 [36.5] 61.8 [18.1] 13.4	129.2 [37.9] 84.9 [24.9] 13.8	124.2 [36.4] 76.9 [22.5] 13.5	120.0 [35.2] 70.2 [20.6] 13.3
E M P E R	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	123.9 [36.3] 52.1 [15.3] 15.0	119.2 [34.9] 47.3 [13.9] 14.7	115.1 [33.7] 43.2 [12.6] 14.5	120.4 [35.3] 63.6 [18.6] 14.9	115.7 [33.9] 57.7 [16.9] 14.6	111.8 [32.8] 52.7 [15.4] 14.4	115.6 [33.9] 73.8 [21.6] 14.8	111.2 [32.6] 66.9 [19.6] 14.5	107.4 [31.5] 61.1 [17.9] 14.3
A T U R	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	107.7 [31.6] 38.6 [11.3] 16.2	103.6 [30.4] 35.0 [10.3] 15.9	100.1 [29.3] 32.0 [9.4] 15.6	104.2 [30.5] 50.1 [14.7] 16.1	100.2 [29.4] 45.4 [13.3] 15.8	96.8 [28.4] 41.5 [12.2] 15.5	99.4 [29.1] 60.3 [17.7] 16.0	95.6 [28.0] 54.7 [16.0] 15.7	92.4 [27.1] 49.9 [14.6] 15.4
°F [°C]	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	88.9 [26.0] 22.6 [6.6] 17.4	85.4 [25.0] 20.5 [6.0] 17.1	82.5 [24.2] 18.7 [5.5] 16.8	85.3 [25.0] 34.1 [10.0] 17.4	82.0 [24.0] 30.9 [9.1] 17.0	79.2 [23.2] 28.2 [8.3] 16.8	80.6 [23.6] 44.3 [13.0] 17.3	77.5 [22.7] 40.1 [11.8] 16.9	74.8 [21.9] 36.7 [10.7] 16.7

DR —Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb Total —Total capacity x 1000 BTUH Sens —Sensible capacity x 1000 BTUH **NOTES:** ① When the entering air dry bulb is other than $80^{\circ}F$ [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

Power —KW input

GROSS SYSTEMS PERFORMANCE DATA (LOW REHEAT MODE) — G240

				EN	ITERING INDOC	R AIR @ 75°F	[23.9°C] dbE ①)			
		wbE		65.3°F [18.5°C]			64°F [17.8°C]			62.5°F [16.9°C]	
	CFM [L/s]		4800 [2265]	3863 [1823]	3200 [1510]	4800 [2265]	3863 [1823]	3200 [1510]	4800 [2265]	3863 [1823]	3200 [1510]
O U T D	60 [15.6]	Total BTUH [kW] Sens BTUH [kW] Power	63.5 [18.6] 10.7 [3.1] 8.3	60.8 [17.8] 9.6 [2.8] 8.2	58.9 [17.3] 8.8 [2.6] 8.0	60.1 [17.6] 15.0 [4.4] 8.3	57.6 [16.9] 13.5 [4.0] 8.1	55.8 [16.3] 12.4 [3.6] 8.0	58.5 [17.1] 29.1 [8.5] 8.3	56.0 [16.4] 26.1 [7.7] 8.1	54.3 [15.9] 24.0 [7.0] 8.0
O O R	65 [18.3]	Total BTUH [kW] Sens BTUH [kW] Power	61.8 [18.1] 9.0 [2.6] 8.4	59.2 [17.3] 8.1 [2.4] 8.3	57.3 [16.8] 7.4 [2.2] 8.1	58.4 [17.1] 13.3 [3.9] 8.4	55.9 [16.4] 12.0 [3.5] 8.2	54.2 [15.9] 11.0 [3.2] 8.1	56.8 [16.6] 27.4 [8.0] 8.4	54.4 [15.9] 24.6 [7.2] 8.2	52.7 [15.4] 22.7 [6.6] 8.1
R Y B	70 [21.1]	Total BTUH [kW] Sens BTUH [kW] Power	60.1 [17.6] 7.3 [2.1] 8.6	57.6 [16.9] 6.5 [1.9] 8.4	55.8 [16.4] 6.0 [1.8] 8.3	56.7 [16.6] 11.6 [3.4] 8.6	54.4 [15.9] 10.4 [3.1] 8.4	52.7 [15.4] 9.6 [2.8] 8.2	55.1 [16.2] 25.7 [7.5] 8.5	52.8 [15.5] 23.1 [6.8] 8.3	51.2 [15.0] 21.3 [6.2] 8.2
B T	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	58.5 [17.2] 5.5 [1.6] 8.7	56.1 [16.4] 4.9 [1.4] 8.5	54.3 [15.9] 4.5 [1.3] 8.4	55.2 [16.2] 9.9 [2.9] 8.7	52.8 [15.5] 8.9 [2.6] 8.5	51.2 [15.0] 8.1 [2.4] 8.4	53.5 [15.7] 23.9 [7.0] 8.7	51.3 [15.0] 21.5 [6.3] 8.5	49.7 [14.6] 19.8 [5.8] 8.3
EMPERATUR	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	57.0 [16.7] 3.7 [1.1] 8.9	54.6 [16.0] 3.3 [1.0] 8.7	52.9 [15.5] 3.0 [0.9] 8.6	53.6 [15.7] 8.0 [2.4] 8.9	51.3 [15.0] 7.2 [2.1] 8.7	49.7 [14.6] 6.6 [1.9] 8.5	52.0 [15.2] 22.1 [6.5] 8.8	49.8 [14.6] 19.9 [5.8] 8.6	48.3 [14.1] 18.3 [5.4] 8.5
	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	55.5 [16.3] 1.8 [0.5] 9.1	53.2 [15.6] 1.6 [0.5] 8.9	51.5 [15.1] 1.5 [0.4] 8.7	52.1 [15.3] 6.1 [1.8] 9.0	49.9 [14.6] 5.5 [1.6] 8.9	48.4 [14.2] 5.1 [1.5] 8.7	50.5 [14.8] 20.2 [5.9] 9.0	48.4 [14.2] 18.2 [5.3] 8.8	46.9 [13.7] 16.7 [4.9] 8.7
°F [°C]	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	54.1 [15.9] -0.1 [0.0] 9.3	51.8 [15.2] -0.1 [0.0] 9.1	50.2 [14.7] -0.1 [0.0] 8.9	50.7 [14.9] 4.2 [1.2] 9.3	48.6 [14.2] 3.8 [1.1] 9.1	47.1 [13.8] 3.5 [1.0] 8.9	49.1 [14.4] 18.3 [5.4] 9.2	47.0 [13.8] 16.4 [4.8] 9.0	45.6 [13.4] 15.1 [4.4] 8.9

GROSS SYSTEMS PERFORMANCE DATA (HIGH REHEAT MODE) - G240

				EN	ITERING INDOC	R AIR @ 75°F	[23.9°C] dbE ①)			
		wbE		65.3°F [18.5°C]			64°F [17.8°C]			62.5°F [16.9°C]	
	CI	FM [L/s]	9600 [4531]	7725 [3646]	6400 [3020]	9600 [4531]	7725 [3646]	6400 [3020]	9600 [4531]	7725 [3646]	6400 [3020]
O U T D	60 [15.6]	Total BTUH [kW] Sens BTUH [kW] Power	192.6 [56.4] 88.3 [25.9] 14.1	184.4 [54.0] 79.3 [23.2] 13.8	178.7 [52.4] 72.9 [21.4] 13.6	187.7 [55.0] 102.9 [30.2] 14.0	179.7 [52.7] 92.5 [27.1] 13.7	174.1 [51.0] 85.1 [24.9] 13.5	184.2 [54.0] 118.4 [34.7] 14.0	176.4 [51.7] 106.3 [31.2] 13.7	170.9 [50.1] 97.8 [28.7] 13.5
O R D	70 [21.1]	Total BTUH [kW] Sens BTUH [kW] Power	186.2 [54.6] 86.1 [25.2] 14.9	178.4 [52.3] 77.4 [22.7] 14.5	172.8 [50.6] 71.2 [20.9] 14.3	181.4 [53.1] 100.8 [29.5] 14.8	173.7 [50.9] 90.5 [26.5] 14.5	168.3 [49.3] 83.3 [24.4] 14.2	177.9 [52.1] 116.2 [34.1] 14.7	170.4 [49.9] 104.4 [30.6] 14.4	165.0 [48.4] 96.1 [28.1] 14.2
R Y B	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	177.2 [51.9] 81.3 [23.8] 15.9	169.7 [49.7] 73.0 [21.4] 15.5	164.4 [48.2] 67.2 [19.7] 15.3	172.3 [50.5] 96.0 [28.1] 15.8	165.0 [48.4] 86.2 [25.3] 15.5	159.9 [46.8] 79.3 [23.2] 15.2	168.8 [49.5] 111.4 [32.6] 15.7	161.7 [47.4] 100.1 [29.3] 15.4	156.6 [45.9] 92.1 [27.0] 15.2
B	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	165.3 [48.5] 73.8 [21.6] 17.2	158.4 [46.4] 66.3 [19.4] 16.8	153.4 [45.0] 61.0 [17.9] 16.6	160.5 [47.0] 88.5 [25.9] 17.1	153.7 [45.0] 79.5 [23.3] 16.7	148.9 [43.6] 73.1 [21.4] 16.5	157.0 [46.0] 103.9 [30.4] 17.0	150.4 [44.1] 93.3 [27.3] 16.7	145.7 [42.7] 85.9 [25.2] 16.4
E M P E	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	150.8 [44.2] 63.6 [18.6] 18.8	144.4 [42.3] 57.1 [16.7] 18.4	139.9 [41.0] 52.6 [15.4] 18.1	145.9 [42.8] 78.3 [22.9] 18.7	139.7 [40.9] 70.3 [20.6] 18.3	135.4 [39.7] 64.7 [19.0] 18.0	142.4 [41.7] 93.7 [27.5] 18.6	136.4 [40.0] 84.2 [24.7] 18.2	132.1 [38.7] 77.4 [22.7] 17.9
A T U R	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	133.4 [39.1] 50.7 [14.9] 20.6	127.8 [37.5] 45.6 [13.4] 20.2	123.8 [36.3] 41.9 [12.3] 19.9	128.6 [37.7] 65.4 [19.2] 20.5	123.1 [36.1] 58.8 [17.2] 20.1	119.3 [35.0] 54.0 [15.8] 19.8	125.1 [36.7] 80.8 [23.7] 20.5	119.8 [35.1] 72.6 [21.3] 20.0	116.1 [34.0] 66.8 [19.6] 19.7
°F [°C]	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	113.4 [33.2] 35.2 [10.3] 22.8	108.6 [31.8] 31.6 [9.3] 22.3	105.2 [30.8] 29.1 [8.5] 22.0	108.5 [31.8] 49.9 [14.6] 22.7	103.9 [30.4] 44.8 [13.1] 22.2	100.7 [29.5] 41.2 [12.1] 21.9	105.0 [30.8] 65.3 [19.1] 22.6	100.6 [29.5] 58.7 [17.2] 22.1	97.4 [28.6] 54.0 [15.8] 21.8

DR —Depression ratio
dbE —Entering air dry bulb
wbE—Entering air wet bulb

Total —Total capacity x 1000 BTUH Sens —Sensible capacity x 1000 BTUH

Power —KW input

NOTES: ① When the entering air dry bulb is other than $80^{\circ}F$ [$27^{\circ}C$], adjust the sensible capacity from the table by adding [$1.10 \times CFM \times (1 - DR) \times (dbE - 80)$].

GROSS SYSTEMS PERFORMANCE DATA (LOW REHEAT MODE) — G300

				EN	ITERING INDOC	R AIR @ 75°F	[23.9°C] dbE ①)			
		wbE		65.3°F [18.5°C]			64°F [17.8°C]			62.5°F [16.9°C]	
	CF	FM [L/s]	4800 [2265]	3863 [1823]	3200 [1510]	4800 [2265]	3863 [1823]	3200 [1510]	4800 [2265]	3863 [1823]	3200 [1510]
OUTD	60 [15.6]	Total BTUH [kW] Sens BTUH [kW] Power	71.4 [20.9] 11.7 [3.4] 8.9	68.4 [20.1] 10.5 [3.1] 8.7	66.3 [19.4] 9.7 [2.8] 8.6	67.6 [19.8] 18.4 [5.4] 8.8	64.7 [19.0] 16.6 [4.9] 8.7	62.7 [18.4] 15.2 [4.5] 8.5	65.4 [19.2] 28.6 [8.4] 8.8	62.7 [18.4] 25.7 [7.5] 8.6	60.7 [17.8] 23.7 [6.9] 8.5
O O R	65 [18.3]	Total BTUH [kW] Sens BTUH [kW] Power	69.5 [20.4] 9.8 [2.9] 9.0	66.5 [19.5] 8.8 [2.6] 8.8	64.5 [18.9] 8.1 [2.4] 8.7	65.6 [19.2] 16.5 [4.8] 9.0	62.8 [18.4] 14.8 [4.4] 8.8	60.9 [17.8] 13.7 [4.0] 8.6	63.5 [18.6] 26.7 [7.8] 8.9	60.8 [17.8] 24.0 [7.0] 8.7	58.9 [17.3] 22.1 [6.5] 8.6
R Y B	70 [21.1]	Total BTUH [kW] Sens BTUH [kW] Power	67.3 [19.7] 7.8 [2.3] 9.2	64.5 [18.9] 7.0 [2.1] 9.0	62.4 [18.3] 6.4 [1.9] 8.8	63.4 [18.6] 14.5 [4.3] 9.1	60.8 [17.8] 13.1 [3.8] 8.9	58.9 [17.3] 12.0 [3.5] 8.8	61.3 [18.0] 24.7 [7.2] 9.1	58.7 [17.2] 22.2 [6.5] 8.9	56.9 [16.7] 20.4 [6.0] 8.7
L B T	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	64.9 [19.0] 5.7 [1.7] 9.4	62.2 [18.2] 5.2 [1.5] 9.2	60.3 [17.7] 4.7 [1.4] 9.0	61.1 [17.9] 12.5 [3.7] 9.3	58.5 [17.1] 11.2 [3.3] 9.1	56.7 [16.6] 10.3 [3.0] 9.0	58.9 [17.3] 22.7 [6.6] 9.3	56.4 [16.5] 20.4 [6.0] 9.1	54.7 [16.0] 18.7 [5.5] 8.9
E M P E R	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	62.4 [18.3] 3.6 [1.1] 9.6	59.7 [17.5] 3.2 [0.9] 9.4	57.9 [17.0] 3.0 [0.9] 9.3	58.5 [17.2] 10.3 [3.0] 9.6	56.1 [16.4] 9.3 [2.7] 9.4	54.3 [15.9] 8.5 [2.5] 9.2	56.4 [16.5] 20.5 [6.0] 9.5	54.0 [15.8] 18.4 [5.4] 9.3	52.3 [15.3] 17.0 [5.0] 9.2
A T U R	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	59.6 [17.5] 1.4 [0.4] 9.9	57.1 [16.7] 1.2 [0.4] 9.7	55.3 [16.2] 1.1 [0.3] 9.5	55.8 [16.3] 8.1 [2.4] 9.9	53.4 [15.7] 7.3 [2.1] 9.7	51.8 [15.2] 6.7 [2.0] 9.5	53.6 [15.7] 18.3 [5.4] 9.8	51.4 [15.0] 16.4 [4.8] 9.6	49.8 [14.6] 15.1 [4.4] 9.5
°F [°C]	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	56.7 [16.6] -0.9 [-0.3] 10.2	54.3 [15.9] -0.8 [-0.2] 10.0	52.6 [15.4] -0.8 [-0.2] 9.9	52.8 [15.5] 5.8 [1.7] 10.2	50.6 [14.8] 5.2 [1.5] 10.0	49.0 [14.4] 4.8 [1.4] 9.8	50.7 [14.9] 16.0 [4.7] 10.1	48.5 [14.2] 14.4 [4.2] 9.9	47.0 [13.8] 13.2 [3.9] 9.8

GROSS SYSTEMS PERFORMANCE DATA (HIGH REHEAT MODE) - G300

				EN	ITERING INDOC	OR AIR @ 75°F	[23.9°C] dbE ①)			
		wbE		65.3°F [18.5°C]			64°F [17.8°C]			62.5°F [16.9°C]	
	CI	FM [L/s]	9600 [4531]	7725 [3646]	6400 [3020]	9600 [4531]	7725 [3646]	6400 [3020]	9600 [4531]	7725 [3646]	6400 [3020]
O U T D	60 [15.6]	Total BTUH [kW] Sens BTUH [kW] Power	248.3 [72.8] 123.3 [36.1] 17.6	237.8 [69.7] 110.8 [32.5] 17.3	230.4 [67.5] 101.9 [29.9] 17.0	242.5 [71.1] 140.7 [41.2] 17.5	232.2 [68.1] 126.4 [37.0] 17.1	225.0 [65.9] 116.2 [34.1] 16.9	236.6 [69.3] 162.1 [47.5] 17.4	226.6 [66.4] 145.6 [42.7] 17.0	219.6 [64.3] 134.0 [39.3] 16.7
O R D	70 [21.1]	Total BTUH [kW] Sens BTUH [kW] Power	239.0 [70.0] 116.1 [34.0] 18.7	228.9 [67.1] 104.3 [30.6] 18.3	221.7 [65.0] 96.0 [28.1] 18.0	233.2 [68.3] 133.5 [39.1] 18.6	223.3 [65.4] 119.9 [35.1] 18.2	216.4 [63.4] 110.3 [32.3] 17.9	227.3 [66.6] 154.9 [45.4] 18.4	217.7 [63.8] 139.2 [40.8] 18.0	210.9 [61.8] 128.0 [37.5] 17.8
R Y B	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	226.9 [66.5] 106.9 [31.3] 20.1	217.3 [63.7] 96.0 [28.1] 19.7	210.5 [61.7] 88.3 [25.9] 19.4	221.1 [64.8] 124.2 [36.4] 20.0	211.8 [62.1] 111.6 [32.7] 19.6	205.2 [60.1] 102.6 [30.1] 19.3	215.2 [63.1] 145.7 [42.7] 19.9	206.1 [60.4] 130.8 [38.3] 19.4	199.7 [58.5] 120.4 [35.3] 19.2
B	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	212.0 [62.1] 95.5 [28.0] 22.0	203.1 [59.5] 85.8 [25.1] 21.5	196.7 [57.7] 78.9 [23.1] 21.2	206.2 [60.4] 112.9 [33.1] 21.8	197.5 [57.9] 101.4 [29.7] 21.4	191.4 [56.1] 93.3 [27.3] 21.0	200.4 [58.7] 134.3 [39.4] 21.7	191.9 [56.2] 120.6 [35.4] 21.2	185.9 [54.5] 111.0 [32.5] 20.9
E M P E R	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	194.4 [57.0] 82.1 [24.1] 24.2	186.2 [54.6] 73.7 [21.6] 23.7	180.4 [52.9] 67.8 [19.9] 23.3	188.6 [55.3] 99.4 [29.1] 24.0	180.6 [52.9] 89.3 [26.2] 23.5	175.0 [51.3] 82.2 [24.1] 23.2	182.7 [53.6] 120.9 [35.4] 23.9	175.0 [51.3] 108.6 [31.8] 23.4	169.6 [49.7] 99.9 [29.3] 23.0
A T U R	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	174.0 [51.0] 66.6 [19.5] 26.7	166.6 [48.8] 59.8 [17.5] 26.2	161.4 [47.3] 55.0 [16.1] 25.8	168.2 [49.3] 83.9 [24.6] 26.6	161.1 [47.2] 75.4 [22.1] 26.0	156.1 [45.7] 69.3 [20.3] 25.7	162.3 [47.6] 105.4 [30.9] 26.5	155.5 [45.6] 94.6 [27.7] 25.9	150.6 [44.1] 87.1 [25.5] 25.5
°F [°C]	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	150.8 [44.2] 49.0 [14.4] 29.7	144.4 [42.3] 44.0 [12.9] 29.1	139.9 [41.0] 40.5 [11.9] 28.6	145.0 [42.5] 66.3 [19.4] 29.6	138.9 [40.7] 59.6 [17.5] 28.9	134.5 [39.4] 54.8 [16.1] 28.5	139.1 [40.8] 87.8 [25.7] 29.4	133.3 [39.0] 78.8 [23.1] 28.8	129.1 [37.8] 72.5 [21.2] 28.4

DR —Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb Total —Total capacity x 1000 BTUH Sens —Sensible capacity x 1000 BTUH

Power —KW input

NOTES: ① When the entering air dry bulb is other than $80^{\circ}F$ [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

AIRFLOW PERFORMANCE—15 TON [52.7 kW] — 60 Hz — SIDEFLOW

, ×		Capacity 15 Tons [52.7 kW]	<u>4</u>	15 To	1S [52.	.7 KW																																	_
Ē.																Exteri	nal St	atic Pr	ressur	틸	ches	External Static Pressure—Inches of Water [kPa]	er [kP	<u>-</u>															
FINW CEM II (6) 0.1 [.02] 0.2 [.05] 0.3 [.07] 0.4 [.10] 0.5 [.12] 0.6 [.15]	و آو	1 [.02]	1 0.2	[.05]	0.3	[70.]	0.4[=	0.5	.12]	0.6	15	0.7 [.	17]	0.8 [.20]	0.	0.9 [.22]	2] 1.	1.0 [.25]	5]	1.1 [.27]] 1.2	[.30]		1.2 [.30] 1.3 [.32]	1.4[.35]	.35]	1.5 [.37]	.37]	1.6	40]	1.7 [./	42]	1.6 [.40] 1.7 [.42] 1.8 [.45] 1.9 [.47] 2.0 [.50]	15	9 [.47] 2.0	.50	_
	RP	RPM W RPW	RPI	8	RPM	8	RPM	8	RPM	8	RPM	8	П	W	RPM	WR	PM \	W RF	ν	V RF	M	RPM W RPM W	8	RPN	W	RPM	Ν	RPM	×	RPM	W	3PM	W	PM \		RPM W	RPM	N	
4800 [2265]	— [£9i	_	1	1	_	Ι	—	Ι	_	Ι	292	1521	291	1621	919	1723 6	640 18	1827 66	663 19:	1934 686		2044 708	3 2156		729 2270 750		2387		770 2507	789	2629	808 2753		825 28	2880 8	843 3009	628 61	3141	-
5000 [2359]	359] —		1	I	-	Ι	_	Ι	I	Ι	574	1587	299	1692	624 1	1799 6	648 19	1909 67	671 2021	121 693	33 2136	36 715	5 2253	3 736	2372	757	2494	777	2619	96/	2746	814 2	2875	832 30	3002 8	849 3142	12 865	3279	6
5200 [2454	154]	1	1	I	I	ı	I	ı	222	1553	583	1661	. 809	1771	632 13	1883 6	626 19	1998 67	679 21	2115 701	J1 2235	35 723	3 2357	744	2482	764	2609	784	2739	802	2871	821 3	3006	838 3-	3143 8	855 3283	3 871	3425	10
5400 [2548]	548] —	_ -	1	1	-	Ι	_	Ι	999	1630	592	1742	. 219	1857	641 13	1975 6	664 20	2095 68	687 22	2218 709	9 2343	13 731	2470	751	2600	1771	2732	791	2867	809	3002	827 3	3144	845 32	3287 86	861 3431	11 877	3226	6
5600 [2643]	343] —		1	I	I	I	Ι	١	9/9	1714	601	1832	. 629	1952	649 2	2075 6	673 22	2200 69	695 23	2328 717	17 2458	58 738	3 2591	1 759	2726	622	2863	798	3003	816	3146	834 3	3291	851 3	3438 86	868 3588	884	3740	
5800 [2737]	737] —	1	1	1	ı	1	228	1686	585	1807	610	1930	634	2055	658 2	2183 6	681 23	2313 70	703 24	2446 725	25 2582	32 746	3 2719	992	2860	98/	3002	802	3148	823	3295	841	3445	858 38	3598 8.	874 3753	3 890	3910	
6000 [2831]	331] —		1	I	-	Ι	699	1781	594	1907	619	2035	643	2166	667 2	2299 6	689 24	2435 7	712 25	2573 733	33 2713	13 754	1 2856	3 774	3001	794	3149	812	3300	830	3452	848	3608	865 33	3765 88	881 3926	968 9	4088	~
6200 [2926]		1	1	1	Ι	Ι	578	1885	603	2016	628	2149	652	2285	675 2	2423 6	698 25	2564 72	720 27	2707 741	11 2852	52 762	2 3001	1 782	3151	801	3304	820	3460	838	3618	855	3778	871 39	3941 88	887 4106	6 902	4274	-
6400 [3020])20] —		1	1	295	1862	288	1996	613	2132	637	2270	661	2411	684 2	2555 7	707 27	2701 72	728 28	2849 749	19 3000	00 770	3153	3 790	3309	809	3467	827	3628	845	3791	862	3926	878 4-	4124 89	894 4295	606 9	4468	~
6600 [3114]	14]		1	I	572	572 1976	262	2115	622	2256	647	2400	029	2546	693 2	2695 7	715 28	2846 73	737 29	2999 758	38 3155	55 778	3 3313	3 797	3474	816	3638	835	3804	852	3972	7 698	4143	885 43	4316 90	901 4491	1 915	4670	
6800 [3209]	[603	1	. 555	1957	582	2099	209	2242	632	2389	929	2537	629	5689	702 2	2842 7	724 29	2999 74	745 31	3157 766	3318	18 786	3 3482	2 805	3648	824	3816	842	3987	859	4161	7 9/8	4337	892 4	4515 90	907 4696	9	١	
7000 [3303]	303] —	1	. 566	2082		592 2228 617	617	2378	2378 641	2529	665	2683	889	2839	711 2	2998 7	733 31	3160 75	754 33;	3323 77	774 3490	90 794	4 3658	3 813	3830	832	4003	850	4179	867	4358	883 4	4539	899 47	4722 9-	914 4908	- 8	1	
7200 [3398]				2215	576 2215 602 2366 627 2521	2366	627	2521	651	651 2677 675	675	2836	698	2998	720 3	3162 7	742 33	3328 76	763 34	3497 783	33 3669	803	3 3843	3 821	4019	840	4198	857	4379	874	4563	7 068	4749	906 49	4938 92	921 5129	- 6	1	
																																							1

NOTE: L-Drive left of bold line, M-Drive right of bold line, N-Drive right of double line.

		_	_		_
				9	761
				2	795
	3.5.4]	2H	99	4	826
S	5.0 [3728.5.4]	BK105H	1VP-56	က	860
				2	888
				-	920
				9	260
				2	593
~	3.0 [2237.1]	BK105H	1VP-44	4	624
_	3	655			
	2	689			
				-	716
Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM

NOTES: 1. Factory sheave settings are shown in bold type.

2. Do not set motor sheave below minimum turns open shown.

3. Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure.

4. Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

COMPONENT AIR RESISTANCE—15 TON [52.8 kW]

Wet Coil 0.03 0 0 0.01 [0.01] [0 0.05 0 0.05			0.06 [0.01]	Resistance — I			[222]			[5504]	[0000]
0.03 (0.01) w			0.06 [0.01]	0.07	- Inches o	Inches of Water [kPa]	(Pa]				
(0.01) (0.05) w			[0.01]	<u>-</u>	80.0	60.0	0.10	0.10	0.11	0.12	0.13
[0.01]			0.05	[0.02]	[0.02]	[0.02]	[0.02]	[0.02]	[0.03]	[0.03]	[0.03]
[0.01]	+			0.05	0.05	90.0	90.0	90.0	0.07	0.08	0.08
			[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.02]	[0.02]	[0.02]
			0.12	0.13	0.13	0.14	0.15	0.16	0.16	0.17	0.18
R.A. Damper Open [0.02] [0	[0.02] [0.02]] [0.03]	[0.03]	[0.03]	[0.03]	[0.03]	[0.04]	[0.04]	[0.04]	[0.04]	[0.04]
			0.02	0.03	0.03	0.04	0.04	90.0	0.05	90.0	90.0
R.A. Damper Open [0.00] [0	[0:00] [0:00]	[0.00]	[0.00]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]
			0.35	0.39	0.43	0.46	0.50	0.54	0.57	0.61	0.64
RXRN-AD81 & Transition RXMC-CJ07 [0.05] [0	[0.06] [0.07]] [0.08]	[0.09]	[0.10]	[0.11]	[0.11]	[0.12]	[0.13]	[0.14]	[0.15]	[0.16]
890.0	0.072 0.076	80.0	0.084	0.088	0.092	960.0	0.1	0.104	0.108	0.112	0.116
riessure Drup Menv o [.02]	[.02] [.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.03]	[.03]	[.03]
Descripe Descripe De	0	_	0.034	0.04	0.046	0.052	0.058	0.065	0.071	0.077	0.083
[00:]	[00.] [00.]	[.01]	[.01]	[.01]	[.0]	[.01]	[.01]	[.02]	[.02]	[.02]	[.02]

NOTE: Add component resistance to duct resistance to determine total external static pressure.

AIRFLOW CORRECTION FACTORS—15 TON [52.8 kW]

				•									
ACTUAL—CFM	4800	2000	5200	5400	2600	5800	0009	6200	6400	0099	0089	2000	7200
[L/s]	[2265]	[2360]	[2454]	[2549]	[2643]	[2737]	[2832]	[2926]	[3020]	[3115]	[3209]	[3304]	[3398]
TOTAL MBTUH	26.0	0.97	0.98	86'0	66.0	1.00	1.00	1.01	1.02	1.02	1.03	1.03	1.04
SENSIBLE MBTUH	0.87	06:0	0.92	0.94	0.97	0.99	1.02	1.04	1.06	1.09	1.11	1.14	1.16
POWER KW	0.98	0.98	0.99	0.99	0.99	1.00	1.00	1.00	1.01	1.01	1.01	1.02	1.02
NOTES: Multiply correction factor times gross performance data-resulting sensible	factor times gr	oss performance	data-resulting	capacit	y cannot exceed total capacity	total capacity.					[] Design	Designates Metric Conversions	Sonversions

AIRFLOW PERFORMANCE - 20 TON [70.3 kW]-SIDEFLOW

::	డ	apacit	Capacity 20 Tons [70.3 kW]		s [70	<u>₹</u>																																
- i															_	Extern	nal Sta	itic Pr	essure	External Static Pressure—Inches of Water [kPa]	hes of	Wate	r [kPa	_														
CFIUW CFIUM 0.1 [.02] 0.2 [.05] 0.3 [.07] 0.4 [.10] 0.5 [.12] 0.6 [.15]	0.1	[.02]	0.2	.05]	0.3	07]	0.4[.	10]	0.5 [12]	0.6[.		0.7 [.1	17] [0.8[.20]		0.9[.22]		1.0[.25]		1.1 [.27]	1.2	1.2 [.30] 1.3 [.32]	1.3	[.32]	1.4 [.	32]	1.4 [.35] 1.5 [.37]	37] 1	1.6 [.4	1.6 [.40] 1.7 [.42]	.7 [.4;	2] 1.	1.8 [.45] 1.9 [.47] 1.9	[.47]	2.0 [.50]
CLIM [L/:	RPM	>	W RPM W RPM W RPM W RPM W	8	RPM	W	3PM	W	3PM	W	NA!	RPM W RP	Ξ	W	RPM \	WRF	RPM V	W RPM	M W	/ RPM	W	RPM	8	RPM	M	RPM	W	RPM	W	RPM	W	RPM	WRP	RPM W	RPM	×	RPM	8
6400 [3020]	— [o	1	Ι	Ι	Ι	1	1	ı	-	<u> </u>	628 2260		652 2	2378 6	675 24	2498 69	697 2621	-	719 2746	16 740	2873	3 762	3004	782	3136	802	3272	822 3	3410 8	842 3	3220 8	98 38	28 8698	879 3838	897	3986	915	4136
6600 [3114]	4] —	1	Ι	I	I	1	ı		615 2247		638 2367		661 2	2489 6	684 26	2613 70	706 27	2740 72	728 2869	39 749	3001	770	3136	790	3273	810	3412	830 3	3222 8	849 3	3699	867 38	3846 88	886 3996	903	4148	921	4303
6800 [3209]	9] —	1	I	ı	ı	ı	ı	1	625 2358		648 2482	_	671 2	2608 6	694 27	2736 7	715 28	2868 737	37 3001	11 758	3138	8//	3277	798	3418	818	3562	837 3	3708	856 3	3857 8	875 40	4008 86	893 4162	2 910	4319	927	4478
7000 [3303]	3] —	1	Ι	Ι	Ι		612 2	2352 (636 2477		629	2605	681 2	2735 7	703 28	2868 73	725 30	3004 74	746 3142	12 767	3282	787	3426	807	3571	826	3719	845 3	3870	864 4	4023 8	882 41	4179 90	900 4337	7 917	4498	934	4661
7200 [3398]	8] —	-	1	Ι	Ι	<u> </u>	623 2	2475	646 2605		z 699	2737	691 2	2872 7	713 30	3009 73	734 31	3149 75	755 3291	91 776	3436	962	3583	815	3733	834	3885	853 4	4040 8	871 4	4198 8	889 43	4328 90	907 4520	0 924	4685	940	4853
7400 [3492]	2] —	1	I	ı	ı	1	634 2	634 2607 657 2741	657 2		679	. 2877	701	3016 7	723 31	3158 74	744 33	3302 764	34 3448	18 784	3597	, 804	3749	824	3903	842	4060	861 4	4219 8	879 4	4381 8	897 45	4545 91	914 4712	2 930	4881	947	5053
7600 [3586]	— [<u>9</u>	-	1	1	622	2611	645 2	2747 (667 2885		E 689	3056	711 3	3169 7	732 33	3312 2	753 34	3463 77	774 3614	14 794	3767	813	3923	832	4082	851	4243	869 4	4406 8	887 4	4572 9	904 47	4741 921	21 4912	2 937	2082	953	5261
7800 [3681]	1] —	I	Ι	Ι	633	7126	656 2	2895 (678 3	3038	200 3	3183	721 3	3331 7	742 34	3481 76	763 36	3633 78	783 3788	803	3946	822	4106	841	4269	829	4434	877 4	4602 8	895 4	4772 9	912 46	4945 92	928 5120	0 944	5298	096	5478
8000 [3775]	5] —	I	622	622 2767 644 2908	644	2908	667 3	3053 (689 3199		711 3	3349	732 3	3500 7	752 36	3655 7	773 38	3812 79	793 3971	71 812	4133	831	4297	849	4464	868	4634	885 4	4806 9	902 4	4980 9	919 51	5157 93	936 5337	7 952	5519	967	5704
8200 [3869]	— [l6	-		633 2923 656 3069	929	6908	678 3	678 3218 700 3369	3 00Z	3369	721 3	3523	742 3	3679 7	762 38	3837 78	783 39	3998 802)2 4162	32 821	4328	840	4497	828	4668	9/8	4842	894 5	5018	910 5	2197 9	927 53	2378	943 5562	2 929	5749	974	5937
8400 [3964] 622 2941 645 3089 667 3239	4] 622	2941	645	3089	299	3239	689 3392	3392	711 3547	3547	732 3	3705	752 3	3865 7	773 40	4028 79	792 4194		812 4362	52 831	4532	849	4705	867	4881	885	5059	902 5	5239 6	919 5	5422 9	932 26	5608 951	57 5796	996 9	5987	981	6180
8600 [4058] 634	8] 634	3111	657	3263	629	3417	701 3	3574	722 3	3734	743 3	. 9688	763 4	4061 7	783 42	4228 80	802 43	4397 822	22 4570	70 840	4744	828	4922	9/8	5101	893	5284	910 5	5468 9	927 5	5656 9	943 58	5846 95	958 6038	8 974	6233	988	6430
8800 [4153] 647 3289 669 3445 691 3604 712 3765 733 3929 754 4095 774	3] 647	3289	699	3445	691	3604	712 3	3765	733 3	3929	754	4095	774 4	4264 7	793 44	4436 8	813 46	4610 831	31 4786	36 850	4965	898	5147	882	5331	905	2217	919 5	3 90/5	932 2	2898	951 60	96 7609	966 6289	9 981	6488	-	1
9000 [4247] 659 3475 681 3635 702 3799 724 3964 744 4132	7] 659	3475	681	3635	702	3799	724 3	3964	744 4	4132	765 4	4303	4303 784 4476		804 46	4652 83	823 48	4830 841	11 5011	11 859	5194	1 877	5380	894	5568	911	5759	927 5	5952 6	943 6	6148 9	929 63	6347 97	974 6548	8 989	6751	1	1
9200 [4341] 671 3670 693 3835 714 4002 735 4172 756 4344 776 4519	1] 671	3670	693	3835	714	4002	735 4	1172	756 4	4344	7 9//	4519	795 4	4697 8	814 48	4877 83	833 50	5059 851	51 5244	44 869	5432	887	5622	904	5814	920	6009	936 6	6207 9	952 6	6407 9	99 296	6610 98	982 6815	5 —	1	-	1
9400 [4436] 684 3873 705 4042 726 4214 747 4388 767 4565 787	5] 684	3873	705	4042	726	4214	747 4	1388	767 4	4565	787		806	4925 8	825 51	5110 8	843 52	5297 861	31 5486	36 879	2678	968	5872	913	6909	929	6268	945 6	6470 8	9 096	6675 9	975 68	6881 99	990 7091	-	1	I	I
9600 [4530] 696 4085 717 4258 738 4434 759 4612 779 4793 798 4977	າ] 696	4085	717	4258	738	4434	759 4	1612	779 4	4793	798		817 5	5163 8	836 53	5351 8	854 55	5542 87	872 5736	36 889	5932	906	6131	922	6332	938	6535	954 6	6742 8	9 696	6 0269	984 71	7162 –	 	1	1	1	
NOTE: 1 - Drive left of hold line M-Drive right of hold line	ol evive	ft of h	nil bloc	M-I	Drive .	inht of	hold	aui																														

NOTE: L-Drive left of bold line, M-Drive right of bold line.

Drive Package			Œ						S					T	(field installed only)	alled only)		
Motor H.P. [W]			5.0 [3728.5.4]	28.5.4]					7.5 [5592.7]	92.7]					7.5 [5592.7]	92.7]		
Blower Sheave			BK1;	BK130H					BK130H	Н0					BK120H	HO:		
Motor Sheave			1VP	1VP-56					1VP-71	71					1VP-71	.71		
Turns Open	-	2	3	4	2	9	-	2	3	4	5	9	-	2	3	4	2	9
RPM	748	723	969	899	641	614	927	905	875	848	820	793	994	296	940	912	883	853

NOTES: 1. Factory sheave settings are shown in bold type.

2. Do not set motor sheave below minimum turns open shown.

3. Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure.

4. Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

COMPONENT AIRFLOW RESISTANCE-20 TON [70.3 kW]

CFM	6400 [3020]	6600 [3114]	6800 7000 [3209] [3303]	7000 [3303]	7200 [3398]	7400 7600 [3492] [3586]	7600 7800 [3586] [3681]		8000 [3775]	8000 8200 8400 8600 8800 83775] [3869] [3964] [4058] [4153]	8400 [3964]	8600 [4058]	8800 [4153]	9000 [4247]	9200 [4341]	9400 [4436]	9600 [4530]
[[-/8]							Resist	ance —	Inches (Resistance — Inches of Water	[kPa]						
Wet Coil	00.00	0.00	0.00	0.01	0.01	0.02	0.02	0.03	0.03	0.04	0.04	0.05	0.05	90.0	90.0	0.07	0.07
wet coll	[.00]	[.00]	[.00]	[.00]	[.00]	[.00]	[.00]	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.02]	[.02]
Dountleur	90.0	90'0	0.07	0.08	80.0	0.09	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.18	0.19	0.20	0.22
	[.01]	[.01]	[.02]	[.02]	[.02]	[.02]	[.02]	[:03]	[:03]	[:03]	[:03]	[.04]	[.04]	[.04]	[:02]	[.05]	[.05]
Downflow Economizer	0.15	0.16	0.16	0.17	0.18	0.19	0.20	0.21	0.22	0.23	0.24	0.25	0.26	0.27	0.28	0.29	0.30
R.A. Damper Open	[.04]	[.04]	[.04]	[.04]	[.04]	[:05]	[:05]	[.05]	[:05]	[90:]	[90:]	[90:]	[90:]	[.07]	[.07]	[.07]	[.07]
Horizontal Economizer	0.04	0.05	0.05	90.0	90.0	0.07	0.07	0.08	60.0	60.0	0.10	0.10	0.11	0.11	0.12	0.12	0.13
R.A. Damper Open	[.01]	[.01]	[.01]	[.01]	[.01]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[:03]	[:03]	[:03]	[.03]	[.03]
Concentric Grill RXRN-AD86	0.26	0.29	0.32	0.35	0.38	0.41	0.44	0.47	0.50	0.53	0.56	0.59	0.62	9.02	69'0	0.72	0.75
& Transition RXMC-CK08	[.06]	[.07]	[.08]	[.09]	[.09]	[.10]	[11]	[.12]	[.12]	[:13]	[.14]	[:15]	[:15]	[.16]	[.17]	[.18]	[.19]
DECOMPANY DECOMPOSE	0.1	0.104	0.108	0.112	0.116	0.12	0.124	0.128	0.132	0.136	0.14	0.144	0.148	0.152	0.156	0.16	0.164
riessure Diop Meny o	[.02]	[.02]	[.03]	[:03]	[.03]	[:03]	[.03]	[.03]	[.03]	[:03]	[:03]	[.03]	[.04]	[.04]	[.04]	[.04]	[.04]
Drocelles Drop MEDV 13	0.058	0.065	0.071	0.077	0.083	0.089	0.095	0.102	0.108	0.114	0.12	0.126	0.132	0.138	0.145	0.151	0.157
riessure Diop inten 13	[.01]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[:03]	[:03]	[.03]	[:03]	[.03]	[:03]	[.04]	[.04]	[.04]

AIRFLOW CORRECTION FACTORS - 20 TON [70,3 kW]

					1												
ACTUAL—CFM	6400	0099	0089	2000	7200	7400	2600	7800	8000	8200	8400	8600	8800	0006	9200	9400	0096
[F/s]	[3020]	[3114]	[3209]	[3303]	[3398]	[3492]	[3286]	[3681]	[3775]	[3869]	[3964]	[4058]	[4153]	[4247]	[4341]	[4436]	[4530]
TOTAL MBH	0.97	0.97	0.98	96:0	66.0	0.99	1.00	1.00	1.01	1.01	1.02	1.02	1.03	1.03	1.03	1.04	1.04
SENSIBLE MBH	0.88	06.0	0.92	0.94	96.0	0.97	0.99	1.01	1.03	1.05	1.07	1.09	1.10	1.12	1.14	1.16	1.18
POWER KW	0.98	0.99	0.99	0.99	0.99	1.00	1.00	1.00	1.00	1.01	1.01	1.01	1.01	1.01	1.02	1.02	1.02
NOTES: Multiply correction factor times gross performance data-resulting sensible c	tion factor tin	les gross pel	rformance da	ata-resulting		apacity cannot	t exceed total	ul capacity.						[]Des] Designates N	Metric Conversions	versions

AIRFLOW PERFORMANCE - 25 TON [87.9 kW] - SIDEFLOW

	ప	apaci	Capacity 25 Tons [87.9 kW]	5 T	's [87.	W 6																																
AIL I																Exte	rnal St	atic P	ressur	External Static Pressure—Inches of Water [kPa	ches o	f Wate	er [kP.	_														
CEM [1 /c]	1 0.1	[.02]	0.1[.02] 0.2[.05]	.05]	0.3	0.3[.07] 0.4[.10] 0.5[.12]	0.4 [10] C	1.5[.1	12] 0	[31.] 9.0	5] 0	7[.1	17] 0.3	0.8 [.20]		0.9[.22]	-	1.0 [.25]		1.1 [.27]	1.2 [.30]	[30]	1.3	[.32]	1.4[.35]	1.5 [.	[.37]	1.6[.4	.40] 1	.7 [.42	.42] 1.8[.45]	[.45]	1.9 [.47] 2	0 [.50]	=
, i	RPM	>	RPM W RPM		W RPM	8	RPM	W RPM	PM	W	RPM \	8	RPM	W RPM	×	/ RPM	≥ ≥	RPM	>	RPM	>	RPM	>	RPM	>	RPM	≥	RPM	×	RPM	N R	RPM W	/ RPM	≥	RPM	W	RPM W	_
8000 [3775]		-	1	-	_	-	-	_	_	_	Ė	Ė	_			Ľ.		807	4333	826	4498	845	4666	863	4837	882	5010	006	5187	918 5	2366	936 5549	19 954	5734	971	2365	988 6113	33
8200 [3869]	- [6	1	I	1	ı	1	1	1	i	1	<u>'</u> 	<u>'</u> 				- 797	7 4331	1 816	4499	835	4670	854	4844	872	5021	890	5201	606	5383	927 5	5569 9	944 5757	57 962	962 5949	979	6143 9	996 6340	Q
8400 [3964]	[4]	1	I	I	I	1	1	1	1			' 			1	908 -	6 4505	5 825	4679	944	4856	863	5036	881	5219	899	5404	917	5593	935 5	5784 9	953 5979	26 62	970 6176	2289 286	377 10	1004 6580	<u>@</u>
8600 [4058]	<u> </u>	١	I	-	-	-	-	<u>.</u> 	· 	_	<u> </u>	<u> </u>	<u> </u>	62 —	797 4514	14 816	6 4691	1 835	4871	854	5054	872	5240	890	5429	806	5621	976	5816	944 6	6013 9	961 6214	14 979	979 6417	996 6623 1012 6833	623 10	112 68	33
8800 [4153]	.3] —		1	1	ı	-	-	_	· -	_	<u> </u>		_	08 —	807 4707	07 826	6 4890	0 845	5 5077	2 863	5266	882	5458	900	5653	918	5851	935	6051	923 6	6255 9	970 6462	32 987	. 6671	987 6671 1004 6883 1021 7099	883 10	121 70	99
9000 [4247]	- [1	1	Ι	1	ı	1	1	1	<u>.</u>	<u> </u>	<u>'</u> 	_ 7	798 47	1727 81	817 4914	14 836	6 5103	3 855	5295	5 873	5490	891	5689	606	5890	927	6094	944	6300	962 6	6510 9	979 6723	23 996	6938	996 6938 1013 7157 1029 7378	157 10	129 73	28
9200 [4341]	H] —	1	I	I	ı	ı	1	Ī	1	_ 7	790 4751	-	809 49	1941 82	828 5133	33 846	6 5329	9 865	5527	7 883	5728	901	5932	919	6140	986	6349	924	6562	971 6	6/2/8	388 696	97 1009	5 7218	6997 1005 7218 1021 7443 1038 7670	443 10	38 76	20
9400 [4436]	— [9 ₁	I	I	1	Ι	Ι	Ι	<u> </u>		8	101 45	801 4972 820		5167 83	838 5366	96 857	7 5567	7 875	5 5772	893	5979	911	6189	928	6403	946	6619	963	6837	2 086	7059 9	997 728	34 101	4 7512	7284 1014 7512 1030 7742 1046 7976	742 10	146 79	92
9600 [4530]	[0	1	I	I	I	ı	1		793 5007		112 52	812 5205 830		5407 84	849 5612	12 867	7 5819	9 885	9030	903	6243	921	6429	938	6299	926	6901	973	7126 990		354 1(7354 1006 7584 1023 7818 1039 8055 1055 8294	34 102	3 7818	10398	055 10	155 82	42
9800 [4624]	- [þi	١	I	Ι	-	ı	Ι	- 	804 5	5247 8	823 54	5452 8	841 56	2960 860	30 5871	71 878	8 6084	4 896	6301	914	6520	931	6743	949	8969	996	7196	. 883	7427	2 666	961 10	7661 1016 7898 1032 8138 1048 8380 1064 8626	38 103	2 8138	1048	380 10	164 86	56
10000 [4719]	- [6		1	1	1	_	797 5	5293 8	815 5501		834 5712	712 8	852 28	5926 871	71 6143	43 889	9 6363	3 907	6585	924	6811	942	7039	929	7270	926	7504	. 663	7742 1009		982 10	7982 1026 8224 1042 8470 1058 8719	24 1042	2 8470	1058 8	- 612	_	1
10200 [4813]	3] —	1	1	1	682	5343	808 5554	3554 8	827 5768		846 59	5985 8	864 62	3205 882	32 6428	28 900	0 6654	4 917	6882	935	7114	952	7348	696	7586	986	7826	1003	8069 1019		8315 10	1035 8564 1051 8816 1067	34 105	1 8816		9071 -	 -	,
10400 [4908]	- [8i	1	1	1	805	5611	820 5828	3828	339 6.	839 6048 857	157 62	6271 8	875 64	3497 89	893 6726	26 911	1 6958	8 928	7193	3 946	7430	963	7671	980	7914	966	8161	1013	8410 1029	1029 8	8662 10	1045 8917 1061 9175	.901 /1	1 9175	-	<u>'</u>		,
10600 [5002]	12] —	Ι		5672	814	795 5672 814 5892 832 6115	832 (351 6.	851 6342 869 6571	99 69		89 288	6803 90	905 7038	38 922	2 7276	.6 940) 7516	3 957	2760	974	8007	066	8256	8256 1007	8208	1023	8764	1040 9	022 10	1023 8764 1040 9022 1056 9283 1071 9547	33 107	1 9547	-	<u>.</u> 	 	,
10800 [5096] 789 5736 807 5960 826 6186 845 6416	69 29	5736	٤ 807	2960	826	9819	845 (863 6648	648 8	881 6883		899 71	7121 91	916 7362		934 7606	6 951	7853	896 8	8103	985	8322	1001	8611	1018	8869 1034		9131	1050 9	9395 10	1066 9662	32 -	-	_	· 	 -	1
11000 [5191] 801 6031 820 6261 839 6494 857 6729 875 6967 893 7209 910	11] 801	6031	820	6261	839	6494	857 (3729	375 6.	8 296	193 72	209 9		7453 92	928 7700		945 7950	0 962	8203	8 979	8458	966	8717	1012		8979 1029	9243 1045		9511 1061		9781 -	<u> </u>		1	_	· 	 -	
11200 [5285] 814 6340 833 6575 851 6814	5] 814	6340	833	6575	851	6814	992 2028		887 7300	300	905 7547		923 77	7797 94	940 8051	51 957	7 8307	7 974	9958 1	3 991	8827	1007	9092	1024	9360	1040	9630	1056	9904	1071 10	10180 -	<u> </u>		-		<u> </u>	 	,
[11400 [5379] 827 6661 846 6903 864 7148 882 7395 900 7646 917 7899 935	.9] 827	6661	846	6903	864	7148	882 7	7395 5	300 7.	646 9	117 78	899		8155 95	952 8414	14 969	9 8677	2 986	8942	1002	9209	1019	1019 9480 1035	1035	9754	1051	9754 1051 10031 1067	1067	10310	1	<u>.</u> T	 	 -	1	ī	<u>.</u>	 	
11600 [5474] 841 6996 859 7244 877 7494	74] 841	9669	829	7244	877	7494	895 7748		912 8004	1004	930 8264	264 9	947 85	8526 96	964 8791	91 981	1 9060	966 0	3 9331	1014	9605	1030	1030 9881		1046 10161	1062	10444	Ι	Ι	1	_ -	 -	<u> </u>	1	Ι	<u>'</u>	 	
[11800 [5568]] 854 [7343] 872 [7597] 890 [7854] 908 [8114] 925 [8376] 943 [8642] 960	8] 854	7343	872	7597	890	7854	3 806	3114 5	325 8.	376 9	143 86	642 9		8910 977	77 9181		3 945	101	0 9733	993 9456 1010 9733 1026 10013 1042 10296 1058 10582	1001	1042	10296	1058	10582	Ι	Ι	Ι	Ι	-	_	 -		I	Ι	<u>.</u>	<u> </u>	1
12000 [5663] 868 7704 886 7964 903 8227	3] 868	7704	1 886	7964	903	8227	921	921 8493 938 8761	338 8		955 9033		972 93	9307 989		35 100	986 90	5 102	2 1014	9585 1006 9865 1022 10148 1038 10434 1054 10723 1070 11015	10434	1054	1072	1070	11015	I	I	Ι	Ι	1		 		1	I	<u>'</u>	 	
MOTE: I - Drive left of hold line M-Drive right of hold line	rivo loff	+ of b.	old line	M	r ovire	ioht of	000	line																														

NOTE: L-Drive left of bold line, M-Drive right of bold line.

Drive Package			4	~					S			
Motor H.P. [W]			7.5 [5	.5 [5592.7]					10 [7457.0]	[0.7		
Blower Sheave			BK1.	3K130H					BK120H	H		
Motor Sheave			1VP	IVP-71					1VP-75	75		
Turns Open	-	2	3	4	5	9	-	2	3	4	2	9
RPM	622	894	870	843	818	791	1067	1041	1010	987	954	929

NOTES: 1. Factory sheave settings are shown in bold type.

2. Do not set motor sheave below minimum turns open shown.

3. Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure.

4. Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

COMPONENT AIR RESISTANCE-25 TON [87.9 kW]

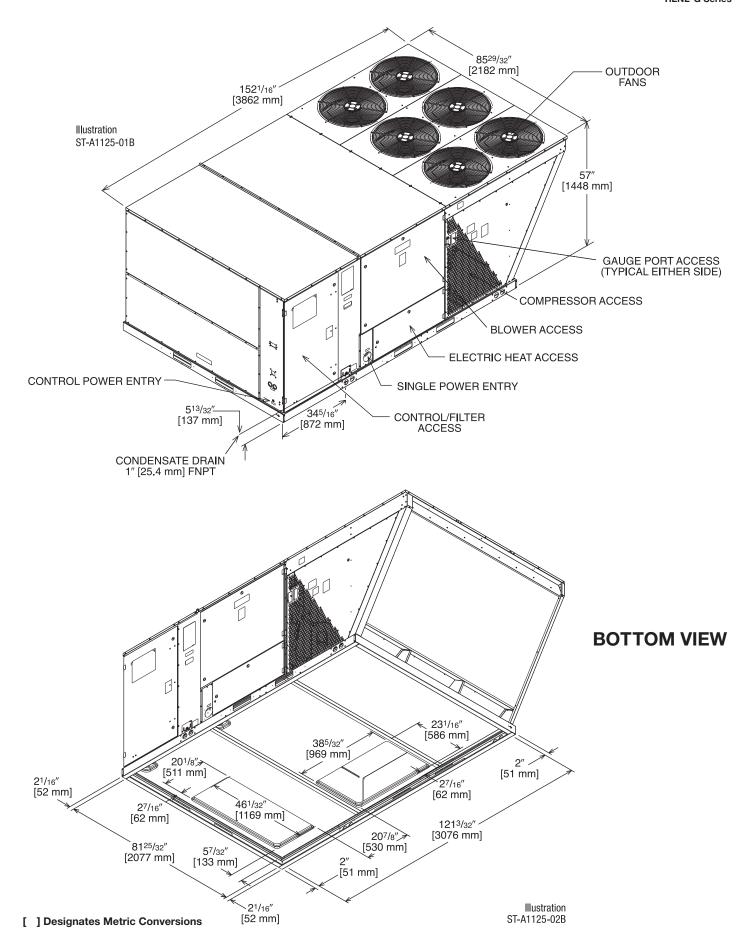
	0008	8400	8800	9200	0096	10000	10400	10800	11200	10000 10400 10800 11200 11600 12000	12000
CFM [6]	[3775]	[3964]	[4153] [4341] [4530] [4719] [4908] [5096] [5285] [5474]	[4341]	[4530]	[4719]	[4908]	[5096]	[5285]		[5663]
[[-				Resist	Resistance —	Inches of Water [kPa]	of Water	· [kPa]			
Wet Ceil	0.07	0.09	0.10	0.12	0.13	0.15	0.16	0.18	0.19	0.21	0.22
Wet coll	[.02]	[.02]	[.02]	[.03]	[:03]	[.04]	[.04]	[.04]	[:02]	[.05]	[.05]
	0.12	0.14	0.16	0.19	0.22	0.25	0.29	0.33	28.0	0.42	0.46
DOWIIIOW	[:03]	[.03]	[.04]	[.05]	[:02]	[90:]	[.07]	[.08]	[.09]	[.10]	Ξ
Downflow Economizer	0.22	0.24	0.26	0.28	08.0	0.32	0.34	0.37	0.39	0.41	0.44
R.A. Damper Open	[:05]	[90.]	[90:]	[.07]	[.07]	[.08]	[.08]	[.09]	[.10]	[.10]	Ξ
Horizontal Economizer	60.0	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19
R.A. Damper Open	[.02]	[.02]	[:03]	[:03]	[:03]	[:03]	[.04]	[.04]	[.04]	[.04]	[.05]
Concentric Grill RXRN-AD88	0.17	0.23	0.30	0.36	0.43	0.50	0.56	0.63	69.0	92.0	0.82
& Trasition RXMC-CL09	[.04]	[.06]	[.07]	[.09]	[.11]	[.12]	[.14]	[.16]	[.17]	[.19]	[.20]
December 1	0.132	0.14	0.148	0.156	0.164	0.172	0.18	0.188	0.196	0.204	0.212
riessule Diup Meny o	[.03]	[.03]	[.04]	[.04]	[.04]	[.04]	[.04]	[.05]	[.05]	[.05]	[.05]
Drocenty Oron MEDV 12	0.108	0.12	0.132	0.145	0.157	0.169	0.182	0.194	0.206	0.219	0.231
riessure Diop MENV 13	[:03]	[.03]	[:03]	[.04]	[.04]	[.04]	[.04]	[.05]	[:02]	[.05]	[90.]

AIRFLOW CORRECTION FACTORS - 25 TON [87.9 kW]

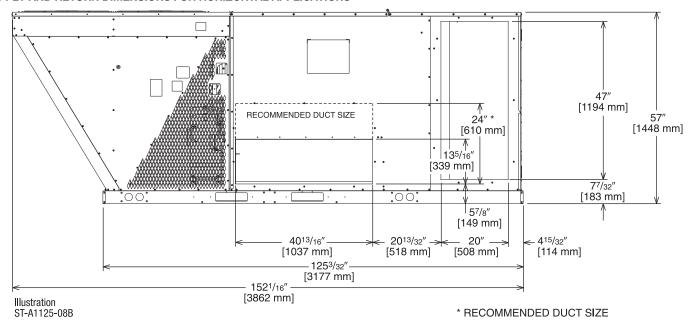
ACTUAL—CFM 8000 8400 8800 9200 9600 10000 10400 10800 11200 11600 1 IL/s1 [3775] [3964] [4153] [4341] [4530] [4719] [4908] [5096] [5286] [5474] [454] TOTAL MBTUH 0.97 0.98 0.99 1.00 1.01 1.02 1.03 1.03 1.04 SENSIBLE MBTUH 0.89 0.92 0.98 1.01 1.04 1.08 1.11 1.14 1.17 POWER KW 0.99 0.99 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.02 1.02 1.02 1.02	AIRLEON CORRECTION FACTORS—25 FOR [67:3 KW]	ורר				7 7		?: <u>'</u>				
UH 0.97 [3775] [3964] [4153] [4341] [4530] [4719] [4908] [5096] [5285] [5474] UH 0.97 0.98 0.99 1.00 1.01 1.02 1.03 1.04 MBTUH 0.89 0.95 0.98 1.01 1.04 1.08 1.11 1.14 1.17 0.99 0.99 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01	ACTUAL—CFIM	8000	8400	8800	9200	0096	10000	10400	10800	11200	11600	12000
UH 0.97 0.98 0.99 0.99 1.00 1.01 1.02 1.03 1.03 1.03 MBTUH 0.89 0.92 0.95 0.98 1.01 1.04 1.08 1.11 1.14 1.14 0.99 0.99 1.00 1.00 1.01 1.01 1.01 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.03 1.01 1.01 1.01 1.02 1.02 1.02 1.03 </th <th>[r/s]</th> <th>[3775]</th> <th>[3964]</th> <th>[4153]</th> <th>[4341]</th> <th>[4530]</th> <th>[4719]</th> <th>[4908]</th> <th>[2096]</th> <th>[5285]</th> <th>[5474]</th> <th>[5663]</th>	[r /s]	[3775]	[3964]	[4153]	[4341]	[4530]	[4719]	[4908]	[2096]	[5285]	[5474]	[5663]
MBTUH 0.89 0.92 0.95 0.98 1.01 1.04 1.08 1.11 1.14 1 0.99 0.99 1.00 1.00 1.01 1.01 1.01 1.01 1.02 1	TOTAL MBTUH	0.97	0.98	0.99	0.99	1.00	1.01	1.02	1.03	1.03	1.04	1.05
0.99 0.99 1.00 1.00 1.00 1.00 1.01 1.01	SENSIBLE MBTUH	0.89	0.92	0.95	0.98	1.01	1.04	1.08	1.11	1.14	1.17	1.20
	POWER KW	0.99	0.99	1.00	1.00	1.00	1.01	1.01	1.01	1.02	1.02	1.02

NOTES: Multiply correction factor times gross performance data-resulting sensible capacity cannot exceed total capacity.

		ELECTRIC	AL DATA – R	LNL- SERIES			
		G180CR	G180CS	G180DR	G180DS	G240CR	G240CS
_	Unit Operating Voltage Range	187-253	187-253	414-506	414-506	187-253	187-253
atio	Volts	208/230	208/230	460	460	208/230	208/230
Ë	Minimum Circuit Ampacity	78/78	81/81	38	40	101/101	109/109
Unit Information	Minimum Overcurrent Protection Device Size	90/90	90/90	45	45	110/110	125/125
•	Maximum Overcurrent Protection Device Size	100/100	100/100	45	50	125/125	125/125
	No.	2	2	2	2	2	2
	Volts	200/230	200/230	460	460	200/230	200/230
_	Phase	3	3	3	3	3	3
Compressor Motor	RPM	3450	3450	3450	3450	3450	3450
- D	HP, Compressor 1	7	7	7	7	10	10
ress	Amps (RLA), Comp. 1	25/25	25/25	12.2	12.2	33.3/33.3	33.3/33.3
d	Amps (LRA), Comp. 1	164/164	164/164	100	100	239/239	239/239
ರ 🗆	HP, Compressor 2	7	7	7	7	7 1/2	7 1/2
	Amps (RLA), Comp. 2	25/25	25/25	12.2	12.2	29.5/29.5	29.5/29.5
	Amps (LRA), Comp. 2	164/164	164/164	100	100	195/195	195/195
_	No.	4	4	4	4	6	6
달 _	Volts	208/230	208/230	460	460	208/230	208/230
Condenser Motor	Phase	1	1	1	1	1	1
ens	HP	1/3	1/3	1/3	1/3	1/3	1/3
puo 🗆	Amps (FLA, each)	2.4/2.4	2.4/2.4	1.4	1.4	2.4/2.4	2.4/2.4
o [Amps (LRA, each)	4.7/4.7	4.7/4.7	2.4	2.4	4.7/4.7	4.7/4.7
	No.	1	1	1	1	1	1
Ean 🗆	Volts	208/230	208/230	460	460	208/230	208/230
ģ [Phase	3	3	3	3	3	3
30 ra	HP	3	5	3	5	5	7 1/2
Evaporator Fan	Amps (FLA, each)	11.5/11.5	14.9/14.9	4.6	6.6	14.7/14.7	23.1/23.1
	Amps (LRA, each)	74.5/74.5	82.6/82.6	38.1	46.3	82.6/82.6	136/136

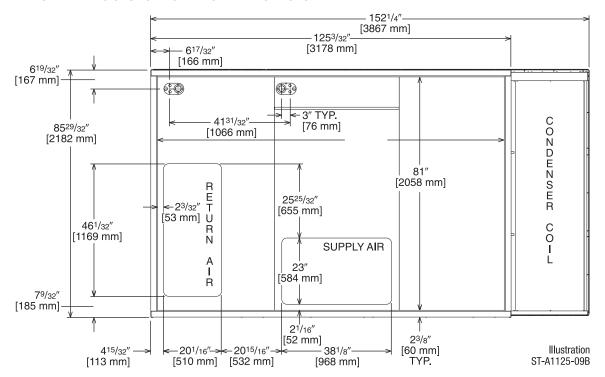

		ELECTRIC	SAL DATA – R	LNL- SERIES			
		G240DR	G240DS	G300CR	G300CS	G300DR	G300DS
_	Unit Operating Voltage Range	414-506	414-506	187-253	187-253	414-506	414-506
atio	Volts	460	460	208/230	208/230	460	460
Ĕ	Minimum Circuit Ampacity	52	56	147/147	149/149	60	63
Unit Information	Minimum Overcurrent Protection Device Size	60	60	175/175	175/175	70	70
•	Maximum Overcurrent Protection Device Size	60	70	175/175	175/175	70	80
	No.	2	2	2	2	2	2
	Volts	460	460	200/240	200/240	460	460
<u> </u>	Phase	3	3	3	3	3	3
Compressor Motor	RPM	3450	3450	3450	3450	3450	3450
	HP, Compressor 1	10	10	11 1/2	11 1/2	11 1/2	11 1/2
ress	Amps (RLA), Comp. 1	17.9	17.9	48.1/48.1	48.1/48.1	18.6	18.6
d	Amps (LRA), Comp. 1	125	125	245/245	245/245	125	125
<u>త</u>	HP, Compressor 2	7 1/2	7 1/2	11 1/2	11 1/2	11 1/2	11 1/2
	Amps (RLA), Comp. 2	14.7	14.7	48.1/48.1	48.1/48.1	18.6	18.6
	Amps (LRA), Comp. 2	95	95	245/245	245/245	125	125
_	No.	6	6	6	6	6	6
Joto	Volts	460	460	208/230	208/230	460	460
er N	Phase	1	1	1	1	1	1
Condenser Motor	HP	1/3	1/3	1/3	1/3	1/3	1/3
puo_	Amps (FLA, each)	1.4	1.4	2.4/2.4	2/2	1.4	1.4
3	Amps (LRA, each)	2.4	2.4	4.7/4.7	3.9/3.9	2.4	2.4
	No.	1	1	1	1	1	1
Fan	Volts	460	460	208/230	208/230	460	460
age	Phase	3	3	3	3	3	3
Evaporator Fan	HP	5	7 1/2	7 1/2	10	7 1/2	10
Eva	Amps (FLA, each)	6.6	9.6	24.2/24.2	28.5/28.5	9.6	12.5
_ [Amps (LRA, each)	46.3	67	136/136	178/178	67	74.6

			208/240	208/240 VOLT, THREE PHASE, 60 HZ, AUXILIARY ELECTRIC HEATER KITS CHARACTERISTICS AND APPLICATION	ASE, 60 HZ, AU	KILIARY ELECTRI	IC HEATER KIT	S CHARACTER	ISTICS AND APP	LICATION			
			Single Power S	Single Power Supply for Both Un	iit and Heater Kit	ţ			Sep	Separate Power Supply for Both Unit and Heater Kit	ply for Both Unit	and Heater Ki	ţ
			Heater Kit			Ai	Air Conditioner		Heater Kit	ır Kit	Ai	Air Conditioner	
Model No.	RXJJ-	No. of	Rated Heater	Heater	Heater	Unit Min. Ckt.	Over Current Protective Device Size	urrent Jevice Size	Min. Ckt.	Max. Fuse	Min. Circuit	Over Current Protective Device Size	urrent evice Size
RLNL-	Nominal KW	Steps	208/240V	208/240V	208/240V	208/240V	Min./Max. 208V	Min./Max. 240V	208/240V	208/240V	208/240V	Min./Max. 208V	Min./Max. 240V
	No Heat					78/78	90/100	90/100			78/78	90/100	90/100
	CE20C	_	14.4/19.2	49.13/65.5	40/46.2	78/78	90/100	90/100	50/58	20/09	I	l	
G180CR	CE40C	2	28.8/38.3	98.25/130.66	79.9/92.2	115/130	125/125	150/150	100/116	100/125	1		1
	CE60C	2	43.2/57.5	147.38/196.16	119.9/138.3	165/188	175/175	200/200	150/173	150/175	ı		1
	CE75C	2	54/71.9	184.22/245.29	149.8/172.8	202/231	225/225	250/250	188/217	200/225	I		
	No Heat			1	1	101/101	110/125	110/125		I	101/101	110/125	110/125
	CE20C	_	14.4/19.2	49.13/65.5	40/46.2	101/101	110/125	110/125	20/28	20/09	I	I	1
G240CR	CE40C	2	28.8/38.3	98.25/130.66	79.9/92.2	119/134	125/125	150/150	100/116	100/125			
	CEGOC	2	43.2/57.5	147.38/196.16	119.9/138.3	169/192	175/175	200/200	150/173	150/175	l	1	
	CE75C	2	54/71.9	184.22/245.29	149.8/172.8	206/235	225/225	250/250	188/217	200/225	ı	I	1
	No Heat					147/147	175/175	175/175		ı	147/147	175/175	175/175
	CE20C	_	14.4/19.2	49.13/65.5	40/46.2	147/147	175/175	175/175	50/58	20/09	I	l	
G300CR	CE40C	2	28.8/38.3	98.25/130.66	79.9/92.2	147/147	175/175	175/175	100/116	100/125			
	CE60C	2	43.2/57.5	147.38/196.16	119.9/138.3	181/204	200/200	225/225	150/173	150/175			
	CE75C	2	54/71.9	184.22/245.29	149.8/172.8	218/247	225/225	250/250	188/217	200/225	ı	ı	
	No Heat]		1		81/81	90/100	90/100			81/81	90/100	90/100
	CE20C	_	14.4/19.2	49.13/65.5	40/46.2	81/81	90/100	90/100	20/28	20/09	ı		1
G180CS	CE40C	2	28.8/38.3	98.25/130.66	79.9/92.2	119/134	125/125	150/150	100/116	100/125	1	1	1
	CE60C	2	43.2/57.5	147.38/196.16	119.9/138.3	169/192	175/175	200/200	150/173	150/175	ı	I	
	CE75C	2	54/71.9	184.22/245.29	149.8/172.8	206/235	225/225	250/250	188/217	200/225	1	1	
	No Heat	I		I		109/109	125/125	125/125	ı	ı	109/109	125/125	125/125
	CE20C	, (14.4/19.2	49.13/65.5	40/46.2	109/109	125/125	125/125	50/58	20/60	ı	l	
6240CS	CE40C	Ν (28.8/38.3	98.25/130.66	79.9/92.2	129/145	061/061	150/150	100/116	100/125	l		
	CEOUC	7 0	43.2/37.3	147.38/190.10	119.9/138.3	1/8/202	200/200	677/677	150/1/3	000,000			
	UE/30	7	54/71.9	104.22/243.29	149.6/172.0	440/40	C77/C77	007/007	100/211	C77/007	20		
	No Heat	•	1	0	20	149/149	0/1/0/1	1,0/1/0	2	8	149/149	C/1/C/1	C/I/C/I
	CEZUC 07400	- (14.4/19.2	49.13/00.0	40/46.2	941/64	6/1/6/1	6/1/6/1	20/00	09/00	I	l	
G300CS	CE40C	2 0	28.8/38.3	98.25/130.66	79.9/92.2	149/151	1/5/1/5	1/5/1/5	100/116	100/125	l	l	
	CE60C	2 0	43.2/57.5	147.38/196.16	119.9/138.3	186/209	200/200	225/225	150/1/3	150/1/5	I	l	
	UE/30	7	54//1.9	184.22/245.29	149.8/172.8	762/577	CZZ/CZZ	300/300	188/21/	522/002		1	
	No Heat	-				109/109	125/125	125/125	1	1 5	109/109	125/125	125/125
	CEZOC	- (14.4/19.2	49.13/65.5	40/46.2	109/109	125/125	125/125	50/28	20/09	I		
G240CT	CE40C	2	28.8/38.3	98.25/130.66	79.9/92.2	129/145	150/150	150/150	100/116	100/125			
	CESOC	7 6	43.2/5/.5 54/71 9	147.38/196.16	119.9/138.3	1/9/202	200/200	225/225	150/1/3	150/1/5			
-		2. 1. 1. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	5:17	101:22/21/23:01	0.5	212/112	22/22	202/022	1000	200/200			

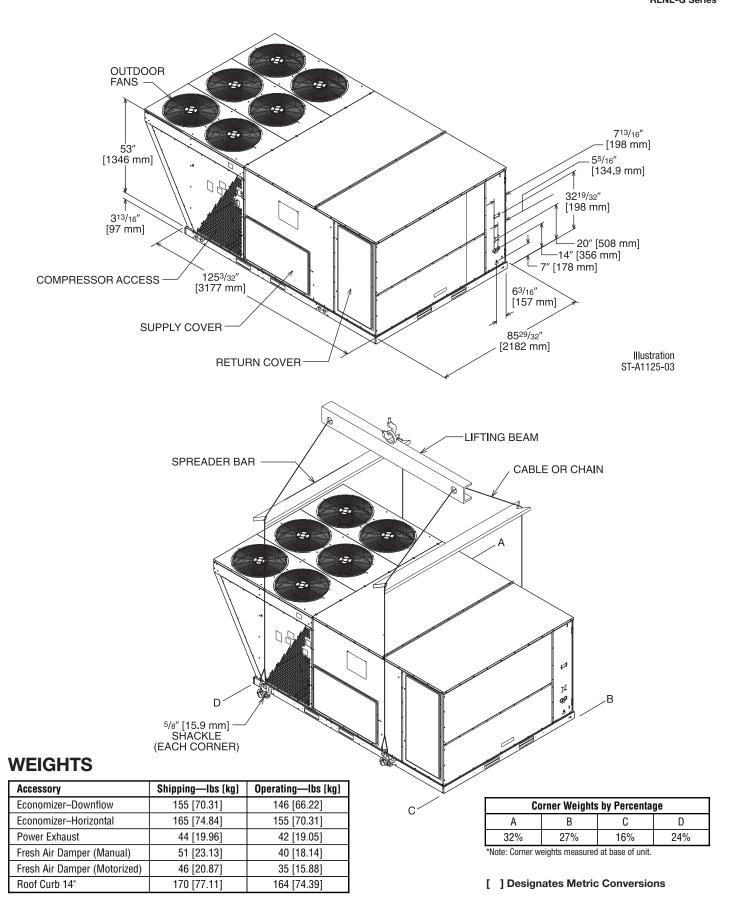

^{*=} For Canadian use only. Uses "P" fuses for inductive circuit. + = Field installed only.

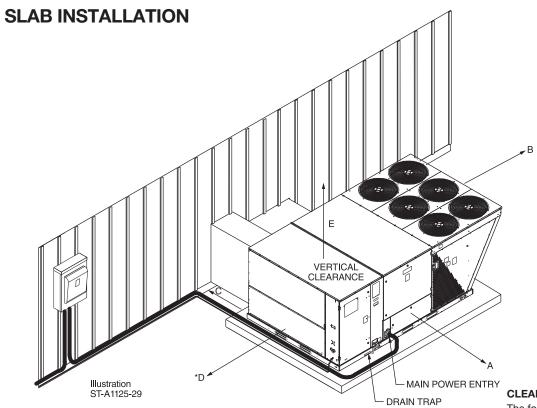
			Single Power St	480 VOLT, THREE PHASE, Single Power Supply for Both Unit	~ "	60 HZ, AUXILIARY ELECTRIC HEATER KITS CHARACTERISTICS AND APPLICATION	HEATER KITS	CHARACTERIS	TICS AND APPL	PPLICATION Senarate Power Sunnly for Both Unit and Heater Kit	uly for Both Unit	and Heater K	+
			Under Kit	appriy tot bottle of			Air Candition		100	Ucate Vit		i anu neater n	
. I The M			nealer MII			₹			near	EL NII	•		1
Model No.	RXJJ-	No. of	Rated Heater	Heater	Heater	Unit Min. Ckt.	Over Current Protective Device Size	urrent Jevice Size	Min. Ckt.	Max. Fuse	Min. Circuit	Over Current Protective Device	Over Current Protective Device Size
BLNL-	Nominal KW	Steps	480V	480V	480V	480V	Min./Max. 480V	Min./Max. 480V	480V	480V	480V	Min./Max. 480V	Min./Max. 480V
	No Heat		1			38	45/45				38	45/45	1
	CE20D	-	19.2	65.5	23.1	38	45/45	1	59	30	1	- [ı
G180DR	CE40D	2	38.4	131	46.2	64	02/02	1	28	09	ı	I	ı
	CE60D	2	57.6	196.5	69.3	93	100/100	ı	87	06	1	I	I
	CE75D	2	72	245.63	86.6	114	125/125	I	109	110	1	l	
	No Heat	I	I	I		52	09/09	I	I	I	52	09/09	I
	CE20D	-	19.2	65.5	23.1	52	09/09		29	30	1	l	
G240DR	CE40D	2	38.4	131	46.2	29	02/02	I	28	09	1	I	I
	CE60D	2	57.6	196.5	69.3	92	100/100	1	87	06	1	I	
	CE75D	2	72	245.63	86.6	117	125/125	1	109	110	1	1	1
	No Heat	1	I	I		09	02/02	I	I	I	09	04/04	l
	CE20D	-	19.2	65.5	23.1	09	02/02	1	29	30	ı	I	1
G300DR	CE40D	2	38.4	131	46.2	20	02/02	1	28	09	ı	I	
	CE60D	2	57.6	196.5	69.3	66	100/100	1	87	06	ı	I	1
	CE75D	2	72	245.63	86.6	121	125/125	1	109	110		I	1
	No Heat	1	I	1	1	40	45/50	I	1	I	40	45/50	I
	CE20D	-	19.2	65.5	23.1	40	45/50	I	59	30	1	I	I
G180DS	CE40D	2	38.4	131	46.2	29	02/02	1	28	09	1	I	1
	CE60D	5	57.6	196.5	69.3	95	100/100	1	87	06	1	l	
	CE75D	2	72	245.63	9.98	117	125/125	1	109	110	1	1	1
	No Heat	1	1	1		26	02/09	1	1	1	26	02/09	
	CE20D	-	19.2	65.5	23.1	99	02/09	I	59	30	1	I	
G240DS	CE40D	2	38.4	131	46.2	20	20/20	I	28	09	1	I	l
	CEGOD	2 0	57.6	196.5	69.3	66	100/100	1	87	6,	1	I	
	CE/5D	7.	7.7	245.63	86.6	121	125/125	١	60L	OLL	[I
	No Heat	[,]	(;	3	63	08/0/	I	8	8	63	08/0/	
	CEZOD	_ (19.2	62.50	23.1	63	08/0/	l	67.	30	l	I	l
G300DS	CE40D	2	38.4	131	46.2	74	08/08		28	09	ı	I	
	CEEOD	2	57.6	196.5	69.3	103	110/110	ı	87	06	1	I	ı
	CE75D	2	72	245.63	9.98	124	125/125		109	110		I	
	No Heat	-	L		T ;	26	02/09		:	1:	26	02/09	
	CE20D	-	19.2	65.5	23.1	26	02/09		59	30	ı	I	
G240DT	CE40D	2	38.4	131	46.2	20	02/02		28	09	1	I	
	CEGOD	0 0	57.6	196.5	69.3	66	100/100	1	87	06	ı	I	1
	UE/3D	7	7/	243.03	0.00	171	621/621	I	601	0 -	l	I	I

*= For Canadian use only. Uses "P" fuses for inductive circuit. += Field installed only.

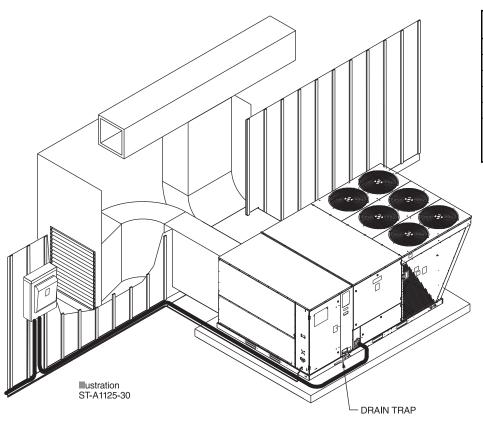


SUPPLY AND RETURN DIMENSIONS FOR HORIZONTAL APPLICATIONS




DUCT SIDE VIEW (REAR)

SUPPLY AND RETURN DIMENSIONS FOR DOWNFLOW APPLICATIONS


BOTTOM VIEW

CLEARANCES

The following minimum clearances are recommended for proper unit performance and serviceability.

Recommended Clearance In. [mm]	Location
80 [2032]	A - Front
18 [457]	B - Condenser Coil
18 [457]	+C - Duct Side
18 [457]	*D - Evaporator End
60 [1524]	E - Above
*Without Economizer 1	8" [457 mm].

With Economizer 48" [1219 mm].
+Without Horizontal Economizer 18" [457 mm].
With Horizontal Economizer 42" [1067 mm].

FIELD INSTALLED ACCESSORY EQUIPMENT-SELF CONTAINED AIR CONDITIONER

Accessory	Model Number	Shipping Weight Lbs. [kg]	Installed Weight Lbs. [kg]	Factory Installation Available?
	RXJJ-CE20 (C, D, Y)	41 [18.6]	31 [14.1]	Yes
Flackiis Hankaus	RXJJ-CE40 (C, D, Y)	44 [20.0]	34 [15.4]	Yes
Electric Heaters	RXJJ-CE60 (C, D, Y)	45 [20.4]	35 [15.9]	Yes
	RXJJ-CE75 (C, D, Y)	46 [20.8]	36 [16.3]	Yes
Downflow Economizer w/Single Enthalpy (DDC)	AXRD-01RGDAM3	277 [125.6]	168 [76.2]	Yes
Downflow Economizer w/Smoke Detector (DDC)	AXRD-01RGDBM3	280 [127.0]	171 [77.6]	Yes
Dual Enthalpy Kit	RXRX-AV04	1 [.5]	.5 [0.2]	No
Horizontal Economizer w/Single Enthalpy (DDC)	AXRD-01RGHAM3	333 [151.0]	301 [36.5]	No
Carbon Dioxide Sensor (Wall Mount)	RXRX-AR02	3 [1.4]	2 [1.0]	No
Power Exhaust (208/230V)	RXRX-BGF05C	119 [54.0]	59 [26.8]	No
Power Exhaust (460V)	RXRX-BGF05D	119 [54.0]	59 [26.8]	No
Manual Fresh Air Damper*	AXRF-KFA1	61 [27.7]	52 [23.6]	No
Motorized Kit for Manual Fresh Air Damper*	RXRX-AW03	42 [19.1]	35 [15.9]	No
Modulating Motor Kit w/position feedback for RXRF-KFA1	RXRX-AW05	45 [20.4]	38 [17.2]	No
Roofcurb, 14"	RXKG-CBH14	184 [83.5]	176 [79.8]	No
Roofcurb Adapter to RXRK-E56	RXRX-CJCE56	465 [210.9]	415 [88.2]	No
Roofcurb Adapter to RXKG-CAF14	RXRX-CJCF14	555 [251.7]	505 [29.1]	No
Concentric Diffuser (Step-Down, 18" x 36")	RXRN-AD81	310 [140.6]	157 [71.2]	No
Concentric Diffuser (Step-Down, 24" x 48")	RXRN-AD86	367 [166.5]	212 [96.2]	No
Concentric Diffuser (Step-Down, 28" x 60")	RXRN-AD88	410 [186.0]	370 [67.8]	No
Concentric Diffuser (Flush, 18" x 36")	RXRN-AD80	213 [96.6]	115 [52.2]	No
Downflow Transition (Rect. to Rect., 18" x 36")	RXMC-CJ07	81 [36.7]	74 [33.6]	No
Downflow Transition (Rect. to Rect., 24" x 48")	RXMC-CK08	81 [36.7]	74 [33.6]	No
Downflow Transition (Rect. to Rect., 28" x 60")	RXMC-CL09	81 [36.7]	74 [33.6]	No
Low-Ambient Control Kit (1 Per Compressor)	RXRZ-C02	3 [1.4]	2 [0.9]	Yes
Unwired Convenience Outlet	RXRX-AN01	2 [0.9]	1.5 [.7]	Yes
Unfused Service Disconnect+	RXRX-AP01	10 [4.5]	9 [4.1]	Yes
Comfort Alert (1 per Compressor)	RXRX-AZ01	3 [1.4]	2 [0.9]	Yes
BACnet Communication Card	RXRX-AY01	1 [0.5]	1 [0.5]	No
LonWorks Communication Card	RXRX-AY02	1 [0.5]	1 [0.5]	No
Room Humidity Sensor	RHC-ZNS4	1 [0.5]+	1 [0.5]+	No*
Room Temperature and Relative Humidity Sensor	RHC-ZNS5	1 [0.5]+	1 [0.5]+	No*
Hail Guard Louvers	AXRX-AAD01L	55 [24.8]	45 [20.3]	Yes
MERV 8 Filter	RXMF-M08A22520	2 [0.9]	1 [0.45]	No
MERV 13 Filter	RXMF-M13A22520	2 [0.9]	1 [0.45]	No

^{*}Motorized Kit and Manual Fresh Air Damper must be combined for a complete Motorized Outside Air Damper Selection.

^[] Designates Metric Conversions

FLUSH MOUNT ROOM TEMPERATURE SENSORS FOR NETWORKED DDC APPLICATIONS

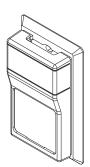
ROOM TEMPERATURE SENSOR with TIMED OVERRIDE BUTTON

RHC-ZNS1

 $10k\Omega$ room temperature sensor transmits room temperature to DDC system. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time.

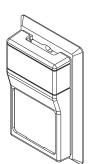
ROOM TEMPERATURE SENSOR with TIMED OVERRIDE BUTTON and STATUS INDICATOR

RHC-ZNS2


 $10k\Omega$ room temperature sensor transmits room temperature to DDC system. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time. Status Indicator Light transmits ALARM flash code to occupied space.

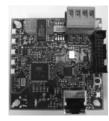
ROOM TEMPERATURE SENSOR RIwith SETPOINT ADJUSTMENT and TIMED OVERRIDE BUTTON

RHC-ZNS3


 $10k\Omega$ room temperature sensor with setpoint adjustment transmits room temperature to DDC system along with desired occupied room temperature setpoint. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time.

ROOM HUMIDITY SENSOR

RHC-ZNS4


Transmits room relative humidity to DDC System.

ROOM TEMPERATURE AND RELATIVE HUMIDITY SENSOR RHC-ZNS5

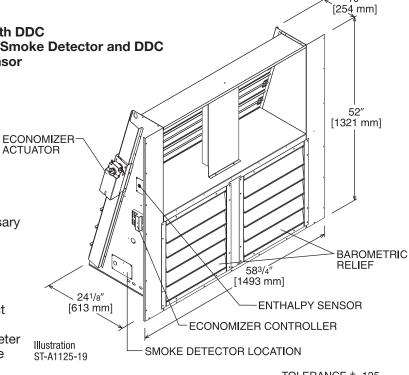
Transmits room temperature and relative humidity to DDC System.

COMMUNICATION CARDS Field Installed

BACnet® COMMUNICATION CARD RXRX-AY01

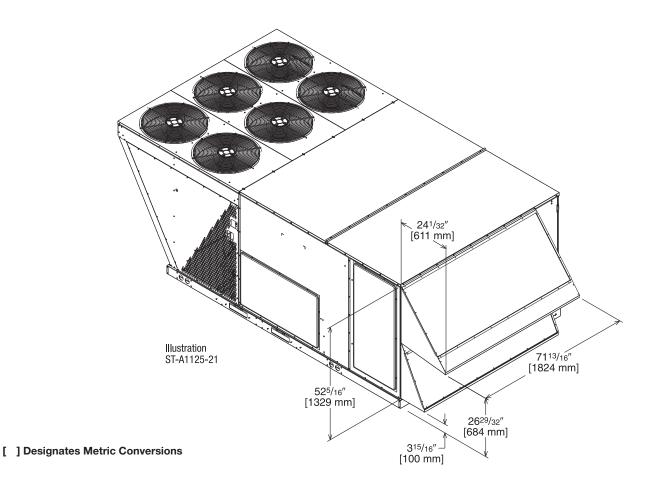
The field installed BACnet® Communication Card allows the RTU-C unit controller to communicate with a third party building management system that supports the BACnet Application Specific Controller device profile. The BACnet® Communication Module plugs onto the unit RTU-C controller and allows communication between the RTU-C and the BACnet MSTP network.

LonWorks® COMMUNICATION CARD RXRX-AY02


The field installed LonWorks® Communication Card allows the RTU-C unit controller to communicate with a third party building management system that supports the LonMark Space Comfort Controller (SCC) functional profile or LonMark Discharge Air Controller (DAC) functional profile. The LonMark Communication Module plugs onto the RTU-C controller and allows communication between the RTU-C and a LonWorks Network.

Field Installed

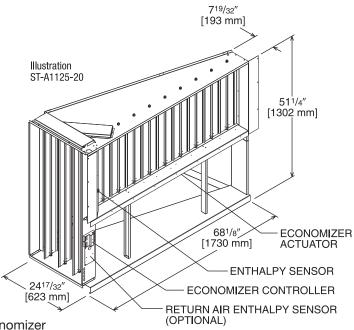
ECONOMIZERS-DOWNFLOW ONLY


AXRD-PMCM3—Single Enthalpy (Outdoor) with DDC AXRD-SMCM3—Single Enthalpy (Outdoor) w/Smoke Detector and DDC RXRX-AR02-Optional Wall-Mounted CO₂ Sensor RXRX-AV03—Dual Enthalpy Upgrade Kit

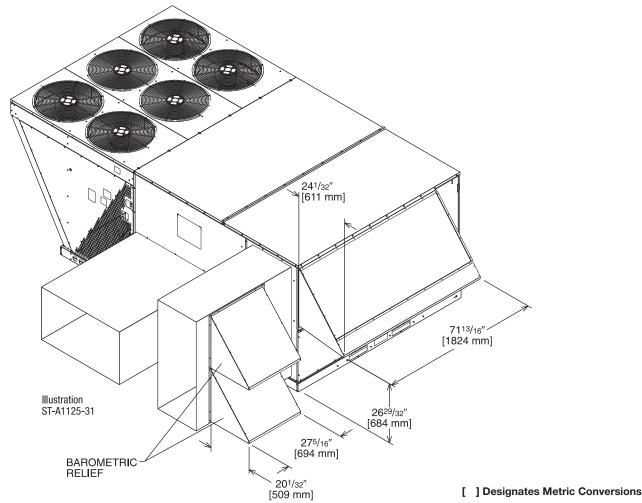
- Features Honeywell Controls
- Available Factory Installed or Field Accessory
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin & 4-pin Electrical Connections
- Pre-Configured No Field Adjustments Necessary
- Standard Barometric Relief Damper
- Single Enthalpy with Dual Enthalpy Upgrade Kit Available
- CO₂ Input Sensor Available
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for Downflow Duct
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is Available from Prostock
- Field Installed Power Exhaust Available
- If connected to a Building Automation System (BAS), all economizer functions can be viewed on the (BAS)

TOLERANCE ± .125

10"

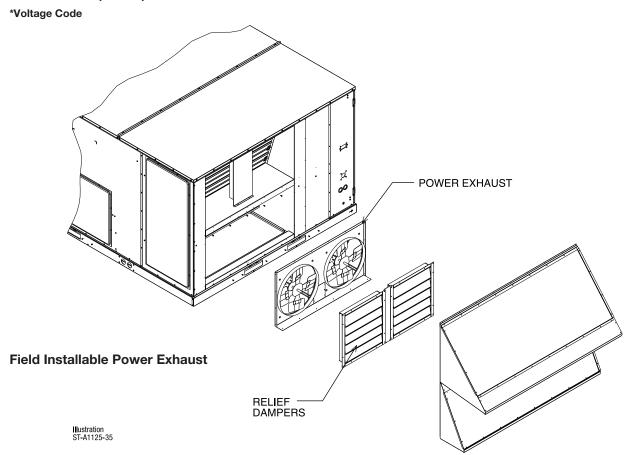


ECONOMIZER FOR HORIZONTAL DUCT INSTALLATION


Field Installed Only

AXRD-RMCM3—Single Enthalpy (Outdoor) with DDC RXRX-AV03—Dual Enthalpy Upgrade Kit RXRX-AR02—Optional Wall-Mounted CO₂Sensor

- Features Honeywell Controls
- Available as a Field Installed Accessory Only
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured No Field Adjustments Necessary
- Standard Barometric Relief Damper
- Single Enthalpy with Dual Enthalpy Upgrade Kit Available
- CO₂ Input Sensor Available
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for Horizontal Duct Application
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is available from Prostock
- Field Installed Power Exhaust Available
- If connected to a Building Automation System (BAS), all economizer functions can be viewed on the (BAS) or 16 x 2 LCD screen
- If connected to thermostat, all economizer functions can be viewed on 16 x 2 character LCD screen



TOLERANCE ± .125

INTEGRAL POWER EXHAUST KIT FOR AXRD-PMCM3 OR SMCM3 ECONOMIZERS

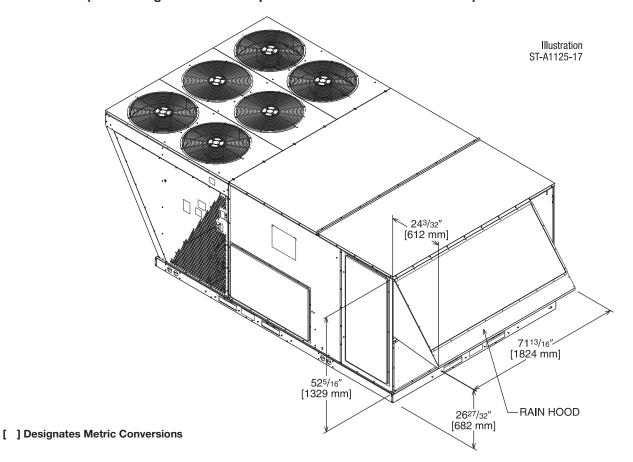
RXRX-BGF05 (C or D)

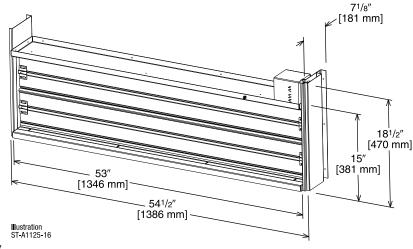
Model No. No	No.	No. Volts	Phase	HP	Low Speed		High Speed ①		FLA	LRA
Model No.	of Fans	VUIIS	Filase	(ea.)	CFM [L/s] ②	RPM	CFM [L/s] ②	RPM	(ea.) (ea.)	(ea.)
RXRX-BGF05C	2	208-230	1	0.75	4100 [1935]	850	5200 [2454]	1050	5	4.97
RXRX-BGF05D	2	460	1	0.75	4100 [1935]	850	5200 [2454]	1050	2.2	3.4

NOTES: ① Power exhaust is factory set on high speed motor tap. ② CFM is per fan at 0" w.c. external static pressure.

FRESH AIR DAMPER

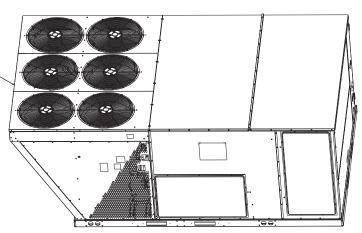
MOTORIZED DAMPER KIT RXRX-AW03 (Motor Kit for AXRF-KFA1)

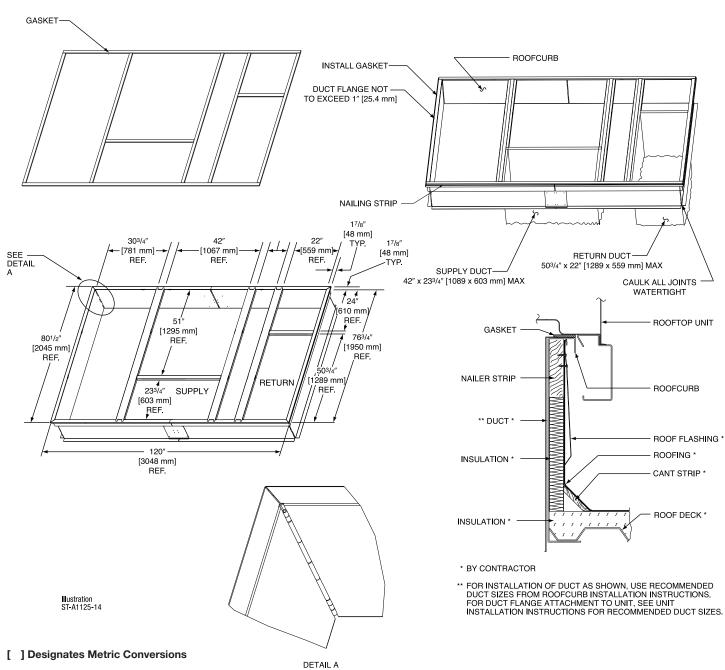

RXRX-AW05 (Modulating Motor Kit with position feedback for AXRF-KFA1)


- Features Honeywell Controls
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured No Field Adjustments Necessary
- Addition of Dual Enthalpy Upgrade Kit allows limited economizer function
- CO₂ Sensor Input Available for Demand Control Ventilation (DCV)
- Optional Remote Minimum Position Potentiometer (270 ohm)
 (Honeywell #S963B1136) is available from Prostock
- All fresh air damper functions can be viewed at the RTU-C unit controller display
- If connected to a Building Automation System (BAS), all fresh air damper functions can be viewed on the (BAS), on 16 x 2 LCD screen
- If connected to thermostat, all fresh air damper functions can be viewed on 16 x 2 LCD screen

RXRX-AW03 (Motorized damper kit for manual fresh air damper)

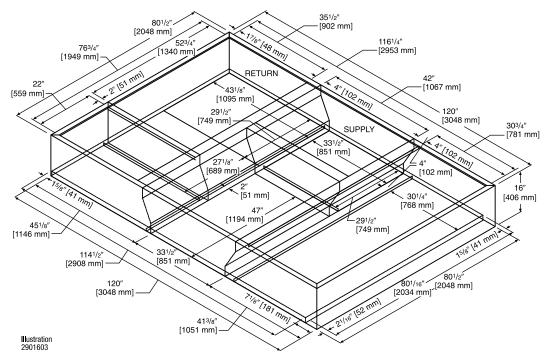
RXRX-AW05 (Modulating Motor Kit with position feedback for AXRF-KFA1)

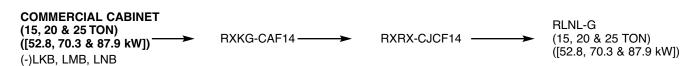


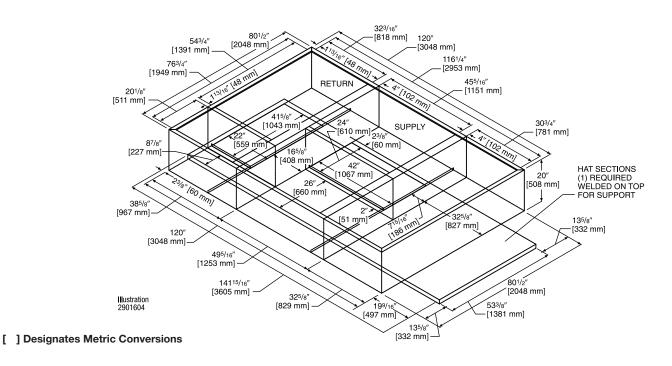

ROOFCURBS (Full Perimeter)

- Friedrich®'s roofcurb design can be utilized on 15, 20 and 25 ton [52.8, 70.3 and 87.9 kW] models.
- One available height (14" [356 mm]).
- Quick assembly corners for simple and fast assembly.
- 1" [25.4 mm] x 4" [102 mm] Nailer provided.
- Insulating panels not required because of insulated outdoor base pan.
- Sealing gasket (28" [711 mm]) provided with Roofcurb.
- Packaged for easy field assembly.

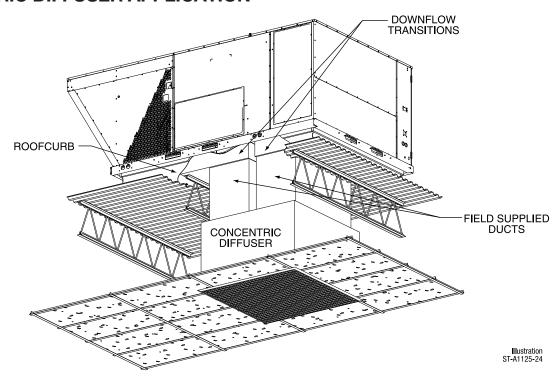
TYPICAL INSTALLATION

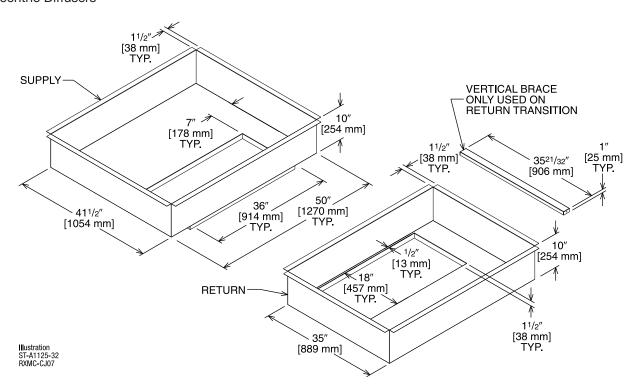

ROOFCURB ASSEMBLY




UNIT-

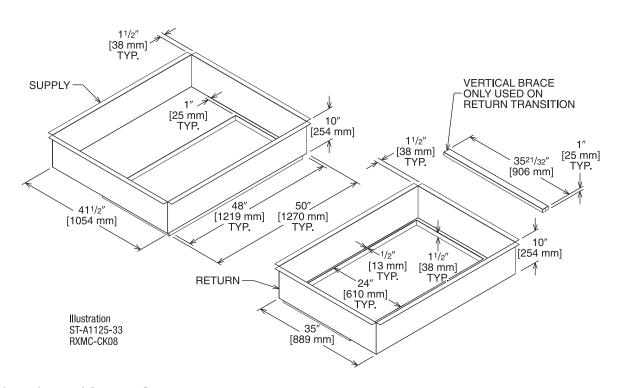
ROOFCURB ADAPTERS



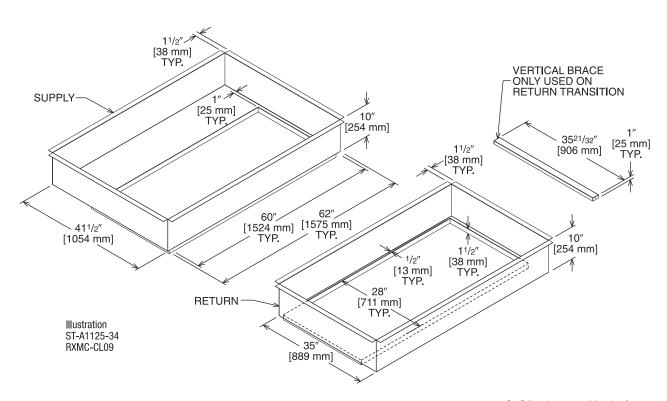

CONCENTRIC DIFFUSER APPLICATION

DOWNFLOW TRANSITION DRAWINGS

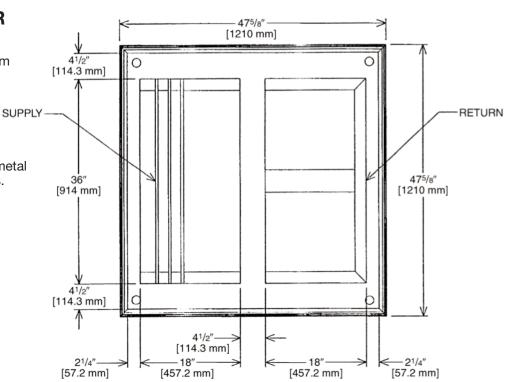
RXMC-CJ07 (15 Ton) [52.8 kW]

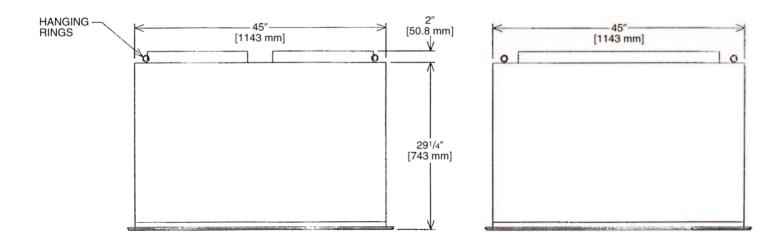

 Used with RXRN-AD80 and RXRN-AD81 Concentric Diffusers

DOWNFLOW TRANSITION DRAWINGS (Con't.)


RXMC-CK08 (20 Ton) [70.3 kW]

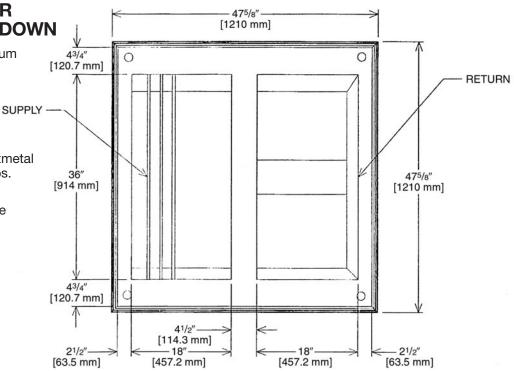
■ Used with RXRN-AD86 Concentric Diffusers

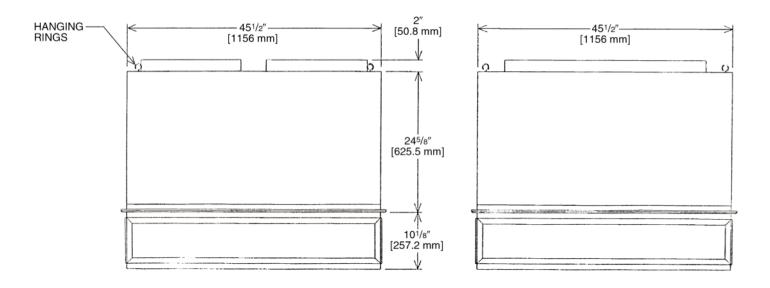

RXMC-CL09 (25 Ton) [87.9 kW]


■ Used with RXRN-AD88 Concentric Diffusers

CONCENTRIC DIFFUSER 15 TON [52.8 kW] FLUSH

- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.

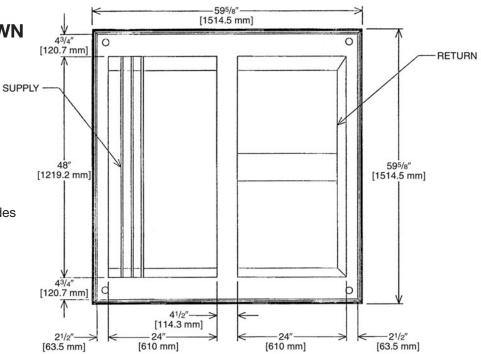


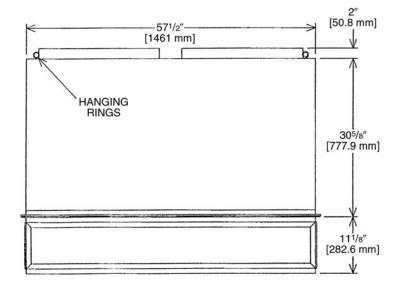

CONCENTRIC DIFFUSER SPECIFICATIONS

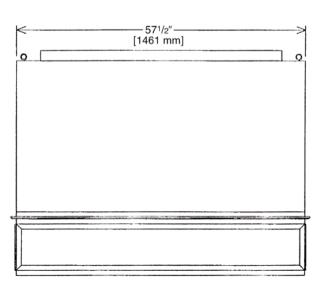
PART Number	CFM [L/s]	STATIC Pressure	THROW FEET	NECK Velocity	JET Velocity
RXRN-AD80	5600 [2643]	0.36	28-37	1000	2082
	5800 [2737]	0.39	29-38	1036	2156
	6000 [2832]	0.42	40-50	1071	2230
	6200 [2926]	0.46	42-51	1107	2308
	6400 [3020]	0.50	43-52	1143	2379
	6600 [3115]	0.54	45-56	1179	2454

CONCENTRIC DIFFUSER 15 TON [52.8 kW] STEP DOWN

- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.
- Double deflection diffuser with the blades secured by spring steel.

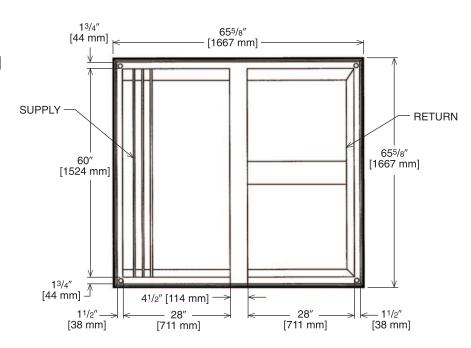

CONCENTRIC DIFFUSER SPECIFICATIONS

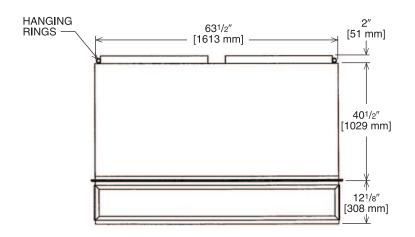

PART Number	CFM [L/s]	STATIC Pressure	THROW FEET	NECK Velocity	JET Velocity
RXRN-AD81	5600 [2643]	0.36	39-49	920	920
	5800 [2737]	0.39	42-51	954	954
	6000 [2832]	0.42	44-54	1022	1022
	6200 [2926]	0.46	45-55	1056	1056
	6400 [3020]	0.50	46-55	1090	1090
	6600 [3115]	0.54	47-56	1124	1124

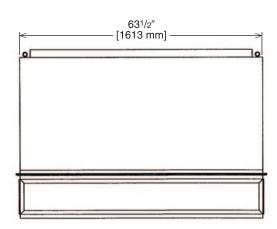

CONCENTRIC DIFFUSER RXRN-AD86 SERIES 20 TON [70.3 kW] STEP DOWN

 All aluminum diffuser with aluminum return air eggcrate.

- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.
- Double deflection diffuser with the blades secured by spring steel.




CONCENTRIC DIFFUSER SPECIFICATIONS


PART Number	CFM [L/s]	STATIC Pressure	THROW FEET	NECK Velocity	JET Velocity
	7200 [3398]	0.39	33-38	827	827
	7400 [3492]	0.41	35-40	850	850
RXRN-AD86	7600 [3587]	0.43	36-41	873	873
	7800 [3681]	0.47	38-43	896	896
	8000 [3776]	0.50	39-44	918	918
	8200 [3870]	0.53	41-46	941	941
	8400 [3964]	0.56	43-49	964	964
	8600 [4059]	0.59	44-50	987	987
	8800 [4153]	0.63	47-55	1010	1010

CONCENTRIC DIFFUSER RXRN-AD88 SERIES 25 TON [87.9 kW] STEP DOWN

- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.
- Double deflection diffuser with the blades secured by spring steel.

CONCENTRIC DIFFUSER SPECIFICATIONS

PART Number	CFM [L/s]	STATIC Pressure	THROW FEET	NECK Velocity	JET Velocity
	10000 [4719]	0.51	46-54	907	907
RXRN-AD88	10500 [4955]	0.58	50-58	953	953
	11000 [5191]	0.65	53-61	998	998
	11500 [5427]	0.73	55-64	1043	1043
	12000 [5663]	0.82	58-67	1089	1089
	12500 [5898]	0.91	61-71	1134	1134
	13000 [6134]	1.00	64-74	1179	1179

Guide Specifications - RLNL-G180 thru C/H300

You may copy this document directly into your building specification. This specification is written to comply with the 2004 version of the "master format" as published by the Construction Specification Institute. www.csinet.org.

ELECTRIC HEAT PACKAGED ROOFTOP

HVAC Guide Specifications Size Range: 15 to 25 Nominal Tons

Section Description

23 06 80 Schedules for Decentralized HVAC Equipment

23 06 80.13 Decentralized Unitary HVAC Equipment Schedule

23 06 80.13.A. Rooftop unit schedule

1. Schedule is per the project specification requirements.

23 07 16 HVAC Equipment Insulation

23 07 16.13 Decentralized, Rooftop Units:

- 1. Interior cabinet surfaces shall be insulated with a minimum 3/4-in. thick, minimum 1-1/2 lb density, flexible fiberglass insulation bonded with a phenolic binder, with aluminum foil facing on the air side.
- 2. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.

23 09 13 Instrumentation and Control Devices for HVAC

23 09 13.23 Sensors and Transmitters

23 09 13.23.A. Thermostats

- 1. Thermostat must
 - a. have capability to energize 2 different stages of cooling, and 2 different stages of heating.
 - b. must include capability for occupancy scheduling.

23 09 23 Direct-digital Control system for HVAC

23 09 23.13 Decentralized, Rooftop Units:

23 09 23.13.A. RTU-C controller

- 1. Shall be ASHRAE 62-2001 compliant.
- 2. Shall accept 18-32VAC input power.
- 3. Shall have an operating temperature range from -40°F (-40°C) to 158°F (70°C), 10% 95% RH (non-condensing).
- 4. Controller shall accept the following inputs: space temperature, setpoint adjustment, outdoor air temperature, indoor air quality, outdoor air enthalpy, fire shutdown, return air enthalpy, fan status, remote time clock/door switch.
- 5. Shall accept a CO2 sensor in the conditioned space, and be Demand Control Ventilation (DCV) ready.
- 6. Shall provide the following outputs: Economizer, fan, cooling stage 1, cooling stage 2, heat stage 1, heat stage 2, exhaust, occupied.
- 7. Unit shall provide surge protection for the controller through a circuit breaker.
- 8. Shall have a field installed communication card allowing the unit to be Internet capable, and communicate at a Baud rate of 19.2K or faster
- 9. Shall have an LED display independently showing the status of activity on the communication bus, and processor operation.
- 10. Shall have either a field installed BACnet® plug-in communication card which includes an EIA-485 protocol communication port, or a field installed LonWorks™ plug-in communications card.
- 11. Software upgrades will be accomplished by local download. Software upgrades through chip replacements are not allowed.
- 12. Shall be shock resistant in all planes to 5G peak, 11ms during operation, and 100G peak, 11ms during storage.
- 13. Shall be vibration resistant in all planes to 1.5G @ 20-300 Hz.
- 14. Shall support a bus length of 4000 ft max, 60 devices per 1000 ft section, and 1 RS-485 repeater per 1000 ft sections.

23 09 23.13.B. Open protocol, direct digital controller:

- 1. Shall be ASHRAE 62-2001 compliant.
- 2. Shall accept 18-30VAC, 50-60Hz, and consumer 15VA or less power.
- 3. Shall have an operating temperature range from -40°F (-40°C) to 130°F (54°C), 10% 90% RH (non-condensing).
- 4. Shall have either a field installed BACnet[®] plug-in communication card which includes an EIA-485 protocol communication port, or a field installed LonWorks[™] plug-in communications card.
- 5. The BACnet® plug in communication card shall include built-in protocol for BACNET (MS/TP and PTP modes)
- 6. The LonWorks™ plug in communication card shall include the Echelon processor required for all Lon applications.
- 7. Shall allow access of up to 62 network variables (SNVT). Shall be compatible with all open controllers
- 8. Baud rate Controller shall be selectable through the EIA-485 protocol communication port.
- 9. Shall have an LED display independently showing the status of serial communication, running, errors, power, all digital outputs, and all analog inputs.
- 10. Shall accept the following inputs: space temperature, setpoint adjustment, outdoor air temperature, indoor air quality, outdoor air enthalpy, compressor lock-out, fire shutdown, enthalpy switch, and fan status/filter status/humidity/remote occupancy.
- 11. Shall provide the following outputs: economizer, fan, cooling stage 1, cooling stage 2, heat stage 1, heat stage 2, exhaust.
- 12. Software upgrades will be accomplished by either local or remote download. No software upgrades through chip replacements are allowed.

23 09 33 Electric and Electronic Control System for HVAC

23 09 33.13 Decentralized, Rooftop Units:

23 09 33.13.A. General:

- 1. Shall be complete with self-contained low-voltage control circuit protected by a resettable circuit breaker on the 24-v transformer side. Transformer shall have 100VA capabilities.
- 2. Shall utilize color-coded wiring.
- 3. Shall include a central control terminal board to conveniently and safely provide connection points for vital control functions such as: smoke detectors, phase monitor, economizer, thermostat, DDC control options, loss of charge, freeze sensor, high pressure switches.
- 4. Unit shall include a minimum of one 10-pin screw terminal connection board for connection of control wiring.

23 09 33.23.B. Safeties:

- 1. Compressor over-temperature, over current.
- 2. Loss of charge switch.
 - a. Units with 2 compressors shall have different colored wires for the circuit 1 and circuit 2 low and high pressure switches.
 - b. Loss of charge switch shall use different color wire than the high pressure switch. The purpose is to assist the installer and service technician to correctly wire and or troubleshoot the rooftop unit.
 - c. Loss of charge switch shall have a different sized connector than the high pressure switch. They shall physically prevent the cross-wiring of the safety switches between the high and low pressure side of the system.
- 3. High-pressure switch.
 - a. Units with 2 compressors shall have different colored wires for the circuit 1 and circuit 2 low and high pressure switches.
 - b. High pressure switch shall use different color wire than the low pressure switch. The purpose is to assist the installer and service person to correctly wire and or troubleshoot the rooftop unit.
 - c. High pressure switch shall have a different sized connector than the loss of charge switch. They shall physically prevent the cross-wiring of the safety switches between the high and low pressure side of the system.
- 4. Freeze protection sensor, evaporator coil.
- 5. Automatic reset, motor thermal overload protector.

23 09 93 Sequence of Operations for HVAC Controls

23 09 93.13 Decentralized, Rooftop Units:

23 09 93.13 INSERT SEQUENCE OF OPERATION

23 40 13 Panel Air Filters

23 40 13.13 Decentralized, Rooftop Units:

23 40 13.13.A. Standard filter section shall

- 1. Shall consist of factory-installed, low velocity, throwaway 2-in. thick fiberglass filters of commercially available sizes.
- 2. Filters shall be accessible through an access panel as described in the unit cabinet section of this specification (23 81 19.13.H).

23 81 19 Self-Contained Air Conditioners

23 81 19.13 Small-Capacity Self-Contained Air Conditioners

23 81 19.13.A. General

- 1. Outdoor, rooftop mounted, electrically controlled, heating and cooling unit utilizing a(n) hermetic scroll compressor(s) for cooling duty and heat pump for heating duty.
- 2. Factory assembled, single-piece heating and cooling rooftop unit. Contained within the unit enclosure shall be all factory wiring, piping, controls, and special features required prior to field start-up.
- 3. Unit shall use environmentally sound R-410a refrigerant.
- 4. Unit shall be installed in accordance with the manufacturer's instructions.
- 5. Unit must be selected and installed in compliance with local, state, and federal codes.

23 81 19.13.B. Quality Assurance

- 1. Unit meets ASHRAE 90.1-2004 minimum efficiency requirements.
- 2. 3 phase units are Energy Star qualified.
- 3. Unit shall be rated in accordance with AHRI Standards 210/240 and 340/360.
- 4. Unit shall be designed to conform to ASHRAE 15, 2001.
- 5. Unit shall be UL-tested and certified in accordance with ANSI Z21.47 Standards and UL-listed and certified under Canadian standards as a total package for safety requirements.
- 6. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.
- 7. Unit casing shall be capable of withstanding 500-hour salt spray exposure per ASTM B117 (scribed specimen).
- 8. Unit casing shall be capable of withstanding Federal Test Method Standard No. 141 (Method 6061) 5000-hour salt spray.
- 9. Unit shall be designed in accordance with ISO 9001:2000, and shall be manufactured in a facility registered by ISO 9001:2000.
- 10. Roof curb shall be designed to conform to NRCA Standards.
- 11. Unit shall be subjected to a completely automated run test on the assembly line. The data for each unit will be stored at the factory, and must be available upon request.
- 12. Unit shall be designed in accordance with UL Standard 1995, including tested to withstand rain.
- 13. Unit shall be constructed to prevent intrusion of snow and tested to prevent snow intrusion into the control box up to 40 mph.

RLNL-G Series

- 23 81 19.13.C. Delivery, Storage, and Handling
 - 1. Unit shall be stored and handled per manufacturer's recommendations.
 - 2. Lifted by crane requires either shipping top panel or spreader bars.
 - 3. Unit shall only be stored or positioned in the upright position.

23 81 19.13.E. Project Conditions

- 1. As specified in the contract.
- 23 81 19.13.F. Operating Characteristics
 - 1. Unit shall be capable of starting and running at 115° F (46° C) ambient outdoor temperature, meeting maximum load criteria of AHRI Standard 340/360 at $\pm 10\%$ voltage.
 - 2. Compressor with standard controls shall be capable of operation from 40°F (4°C), ambient outdoor temperatures. Accessory low ambient kit is necessary if mechanically cooling at ambient temperatures below 40°F (4°C).
 - 3. Unit shall discharge supply air vertically or horizontally as shown on contract drawings.
 - 4. Unit shall be factory configured for vertical supply & return configurations.
 - 5. Unit shall be field convertible from vertical to horizontal configuration.

23 81 19.13.G. Electrical Requirements

1. Main power supply voltage, phase, and frequency must match those required by the manufacturer.

23 81 19.13.H. Unit Cabinet

- 1. Unit cabinet shall be constructed of galvanized steel, and shall be bonderized and coated with a baked enamel finish on all externally exposed surfaces.
- 2. Unit cabinet exterior paint shall be: film thickness, (dry) 0.003 inches minimum, gloss (per ASTM D523, 60°F): 60, Hardness: H-2H Pencil hardness.
- 3. Evaporator fan compartment interior cabinet insulation shall conform to AHRI Standard 340/360 minimum exterior sweat criteria. Interior surfaces shall be insulated with a minimum 3/4-in. thick, 1 lb density, flexible fiberglass insulation, aluminum foil-faced on the air side.
- 4. Base of unit shall have locations for thru-the-base electrical connections (factory installed or field installed), standard.
- 5. Base Rail
 - a. Unit shall have base rails on all sides.
 - b. Holes shall be provided in the base rails for rigging shackles to facilitate maneuvering and overhead rigging.
 - c. Holes shall be provided in the base rail for moving the rooftop by fork truck.
 - d. Base rail shall be a minimum of 14 gauge thickness.
- 6. Condensate pan and connections:
 - a. Shall be a sloped condensate drain pan made of a non-corrosive material.
 - b. Shall comply with ASHRAE Standard 62.
 - c. Shall use a 1" -11 1/2 NPT drain connection, through the side of the drain pan. Connection shall be made per manufacturer's recommendations.
- 7. Electrical Connections
 - a. All unit power wiring shall enter unit cabinet at a single, factory-prepared, knockout location.
 - b. Thru-the-base capability
 - (1.) Standard unit shall have a thru-the-base electrical location(s) using a raised, embossed portion of the unit basepan.
 - (2.) No basepan penetration, other than those authorized by the manufacturer, is permitted.
- 8. Component access panels (standard)
 - a. Cabinet panels shall be easily removable for servicing.
 - b. Stainless steel metal hinges are standard on all doors.
 - c. Panels covering control box, indoor fan, indoor fan motor, and electric or gas heater components (where applicable), shall have 1/4 turn latches.

23 81 19.13.J. Coils

- 1. Standard Aluminum/Copper Coils: on all models.
 - a. Standard evaporator and condenser coils shall have aluminum lanced plate fins mechanically bonded to seamless internally grooved copper tubes with all joints brazed.
 - b. Evaporator and Condenser coils shall be leak tested to 150 psig, pressure tested to 550 psig, and qualified to UL 1995 burst test at 2,200 psig.

23 81 19.13.K. Refrigerant Components

- 1. Refrigerant circuit shall include the following control, safety, and maintenance features:
 - a. Thermal Expansion Valve (TXV) with orifice type distributor
 - b. Refrigerant filter drier.
 - c. External service gauge connections to unit suction and discharge lines.
 - d. Pressure gauge access through an access port in the front and rear panel of the unit.
- 2. Compressors
 - a. Unit shall use one fully hermetic, scroll compressor for each independent refrigeration circuit.
 - b. Compressor motors shall be cooled by refrigerant gas passing through motor windings.
 - d. Compressors shall be internally protected from high discharge temperature conditions. Advanced Scroll Temperature Protection on 240-300 sizes.

- e. Compressors shall be protected from an over-temperature and over-amperage conditions by an internal, motor overload device.
- f. Compressor shall be factory mounted on rubber grommets.
- g. Compressor motors shall have internal line break thermal, current overload and high pressure differential protection.
- h. Crankcase heaters shall not be required for normal operating range.

23 81 19.13.L. Filter Section

- 1. Filters access is specified in the unit cabinet section of this specification.
- 2. Filters shall be held in place by a sliding filter tray, facilitating easy removal and installation.
- 3. Shall consist of factory-installed, low velocity, throw-away 2-in. thick fiberglass filters.
- 4. Filters shall be standard, commercially available sizes.
- 5. Filter face velocity shall not exceed 365 fpm at nominal airflows.

23 81 19.13.M. Evaporator Fan and Motor

- 1. Evaporator fan motor:
 - a. Shall have permanently lubricated bearings.
 - b. Shall have inherent automatic-reset thermal overload protection or circuit breaker.
 - c. Shall have a maximum continuous bhp rating for continuous duty operation; no safety factors above that rating shall be required.
- 2. Belt-driven Evaporator Fan:
 - a. Belt drive shall include an adjustable-pitch motor pulley.
 - b. Shall use sealed, permanently lubricated ball-bearing type.
 - c. Blower fan shall be double-inlet type with forward-curved blades.
 - d. Shall be constructed from steel with a corrosion resistant finish and dynamically balanced.

23 81 19.13.N. Condenser Fans and Motors

- 1. Condenser fan motors:
 - a. Shall be a totally enclosed motor.
 - b. Shall use permanently lubricated bearings.
 - c. Shall have inherent thermal overload protection with an automatic reset feature.
 - d. Shall use a shaft-down design. Shaft-up designs including those with "rain-slinger devices" shall not be allowed.
- 2. Condenser Fans:
 - a. Shall be a direct-driven propeller type fan.
 - b. Shall have aluminum blades riveted to corrosion-resistant steel spiders and shall be dynamically balanced.

23 81 19.13.O. Special Features, Options and Accessories

- 1. Integrated Economizers:
 - a. Integrated, gear-driven parallel modulating blade design type capable of simultaneous economizer and compressor operation.
 - b. Independent modules for vertical or horizontal return configurations shall be available. Vertical return modules shall be available as a factory installed option.
 - c. Damper blades shall be galvanized steel with metal gears. Plastic or composite blades on intake or return shall not be acceptable.
 - d. Shall include all hardware and controls to provide free cooling with outdoor air when temperature and/or humidity are below setpoints.
 - e. Shall be equipped with gear driven dampers for both the outdoor ventilation air and the return air for positive air stream control.
 - f. Shall be capable of introducing up to 100% outdoor air.
 - g. Shall be equipped with a barometric relief damper capable of relieving up to 100% return air.
 - h. Shall be designed to close damper(s) during loss-of-power situations with spring return built into motor.
 - i. An outdoor single enthalpy sensor shall be provided as standard. Outdoor air sensor setpoint shall be adjustable and shall range from the enthalpy equivalent of 63°F @ 50% rh to 73°F @ 50% rh. Additional sensor options shall be available as accessories.
 - j. The economizer controller shall also provide control of an accessory power exhaust unit function. Factory set at 70%, with a range of 0% to 100%.
 - k. The economizer shall maintain minimum airflow into the building during occupied period and provide design ventilation rate for full occupancy. A remote potentiometer may be used to override the damper setpoint.
 - I. Dampers shall be completely closed when the unit is in the unoccupied mode.
 - m. Economizer controller shall accept a 2-10Vdc CO₂ sensor input for IAQ/DCV control. In this mode, dampers shall modulate the outdoor-air damper to provide ventilation based on the sensor input.
 - n. Compressor lockout sensor on the unit controller is factory set at 35°F and is adjustable from 30°F (-1°C) to 50°F (10°C) and resets the cooling lockout at 5°F (+2.7°C) above the set point.
 - o. Actuator shall be direct coupled to economizer gear. No linkage arms or control rods shall be acceptable.
 - p. Economizer controller shall provide indications when in free cooling mode, in the DCV mode, or the exhaust fan contact is closed.
 - q. Economizer wire harness will have provision for smoke detector.

- 2. Two-Position Motorized Damper
 - a. Damper shall be a Two-Position Motorized Damper. Damper travel shall be from the full closed position to the field adjustable %-open setpoint.
 - b. Damper shall include adjustable damper travel from 25% to 100% (full open).
 - c. Damper shall include single or dual blade, gear driven dampers and actuator motor.
 - d. Actuator shall be direct coupled to damper gear. No linkage arms or control rods shall be acceptable.
 - e. Damper will admit up to 100% outdoor air for applicable rooftop units.
 - f. Damper shall close upon indoor (evaporator) fan shutoff and/or loss of power.
 - g. The damper actuator shall plug into the rooftop unit's wiring harness plug. No hard wiring shall be required.
 - h. Outside air hood shall include aluminum water entrainment filter
- 3. Manual damper
 - a. Manual damper package shall consist of damper, air inlet screen, and rain hood which can be preset to admit up to 50% outdoor air for year round ventilation.
- 4. Head Pressure Control Package
 - a. Controller shall control coil head pressure by condenser-fan cycling.
- 5. Condenser Coil Hail Guard Assembly
 - a. Shall protect against damage from hail.
 - b. Shall be louvered design.
- 6. Convenience Outlet:
 - a. Non-Powered convenience outlet.
 - (1.) Outlet shall be powered from a separate 115-120v power source.
 - (2.) A transformer shall not be included.
 - (3.) Outlet shall be factory-installed and internally mounted with easily accessible 115-v female receptacle.
 - (4.) Outlet shall include 15 amp GFI receptacles.
 - (5.) Outlet shall be accessible from outside the unit.
- 7. Fan/Filter Status Switch:
 - a. Switch shall provide status of indoor evaporator fan (ON/OFF) or filter (CLEAN/DIRTY).
 - Status shall be displayed either over communication bus (when used with direct digital controls) or through the controller LCD display inside the unit control box.
- 8. Propeller Power Exhaust:
 - a. Power exhaust shall be used in conjunction with an integrated economizer.
 - b. Independent modules for vertical or horizontal return configurations shall be available.
 - c. Horizontal power exhaust is shall be mounted in return ductwork.
 - d. Power exhaust shall be controlled by economizer controller operation. Exhaust fans shall be energized when dampers open past the 0-100% adjustable setpoint on the economizer control.
- 9. Roof Curbs (Vertical):
 - a. Full perimeter roof curb with exhaust capability providing separate air streams for energy recovery from the exhaust air without supply air contamination.
 - b. Formed galvanized steel with wood nailer strip and shall be capable of supporting entire unit weight.
 - c. Permits installation and securing of ductwork to curb prior to mounting unit on the curb.
- 10. High-Static Indoor Fan Motor(s) and Drive(s):
 - a. High-static motor(s) and drive(s) shall be factory-installed to provide additional performance range.
- 11. Outdoor Air Enthalpy Sensor:
 - a. The outdoor air enthalpy sensor shall be used to provide single enthalpy control. When used in conjunction with a return air enthalpy sensor, the unit will provide differential enthalpy control. The sensor allows the unit to determine if outside air is suitable for free cooling.
- 13. Return Air Enthalpy Sensor:
 - a. The return air enthalpy sensor shall be used in conjunction with an outdoor air enthalpy sensor to provide differential enthalpy control.
- 14. Indoor Air Quality (CO2) Sensor:
 - a. Shall be able to provide demand ventilation indoor air quality (IAQ) control.
 - b. The IAQ sensor shall be available in wall mount with LED display. The setpoint shall have adjustment capability.
- 15. Smoke detectors:
 - a. Shall be a Four-Wire Controller and Detector.
 - b. Shall be environmental compensated with differential sensing for reliable, stable, and drift-free sensitivity.
 - c. Shall use magnet-activated test/reset sensor switches.
 - d. Shall have a recessed momentary switch for testing and resetting the detector.
 - e. Controller shall include:

- (1.) One set of normally open alarm initiation contacts for connection to an initiating device circuit on a fire alarm control panel.
- (2.) Two Form-C auxiliary alarm relays for interface with rooftop unit or other equipment.
- (3.) One Form-C supervision (trouble) relay to control the operation of the Trouble LED on a remote test/reset station.
- (4.) Capable of direct connection to two individual detector modules.
- (5.) Can be wired to up to 14 other duct smoke detectors for multiple fan shutdown applications.

16. Electric Heat:

- a. Heating Section
 - (1.) Heater element open coil resistance wire, nickel-chrome alloy, strung through ceramic insulators mounted on metal frame. Coil ends are staked and welded to terminal screw slots.
 - (2.) Heater assemblies are provided with integral fusing for protection of internal heater circuits not exceeding 48 amps each. Auto reset thermo limit controls, magnetic heater contactors (24 v coil) and terminal block all mounted in electric heater control box (minimum 18 ga galvanized steel) attached to end of heater assembly.

26 29 23.12 Adjustable Frequency Drive

- 1. Unit shall be supplied with an electronic variable frequency drive for the supply air fan.
- 2. Drive shall be factory installed in an enclosed cabinet.
- 3. Drive shall meet UL Standard 95-5V.
- 4. The completed unit assembly shall be UL listed.
- 5. Drives are to be accessible through a tooled access hinged door assembly.
- 6. The unit manufacturer shall install all power and control wiring.
- 7. The supply air fan drive output shall be controlled by the factory installed main unit control system and drive status and operating speed shall be monitored and displayed at the main unit control panel.
- 8. Drive shall be programmed and factory run tested in the unit.

Limited Warranty
RLNL-G Series

BEFORE PURCHASING THIS APPLIANCE, READ IMPORTANT ENERGY COST AND EFFICIENCY INFORMATION AVAILABLE FROM YOUR RETAILER.

GENERAL TERMS OF LIMITED WARRANTY*

Friedrich will furnish a replacement for any part of this product which fails in normal use and service within the applicable periods stated, in accordance with the terms of the limited warranty.

Compressor

3 Phase, Commercial Applications.....Five (5) Years **Parts**

3 Phase, Commercial ApplicationsOne (1) Year

Factory Standard Heat Exchanger

3 Phase, Commercial ApplicationsTen (10) Years Stainless Steel Heat Exchanger

3 Phase, Commercial ApplicationsTwenty (20) Years

^{*}For complete details of the Limited and Conditional Warranties, including applicable terms and conditions, contact your local contractor or the Manufacturer for a copy of the product warranty certificate.

Before proceeding with installation, refer to installation instructions packaged with each model, as well as complying with all Federal, State, Provincial, and Local codes, regulations, and practices.

© 2023 Rheem Manufacturing Company. Friedrich trademarks owned by Rheem Manufacturing Company. In keeping with its policy of continuous progress and product improvement, Friedrich reserves the right to make changes without notice.

Friedrich • 5600 Old Greenwood Road Fort Smith, Arkansas 72908 • www.friedrich.com Friedrich • 125 Edgeware Road, Unit 1 Brampton, Ontario • L6Y 0P5