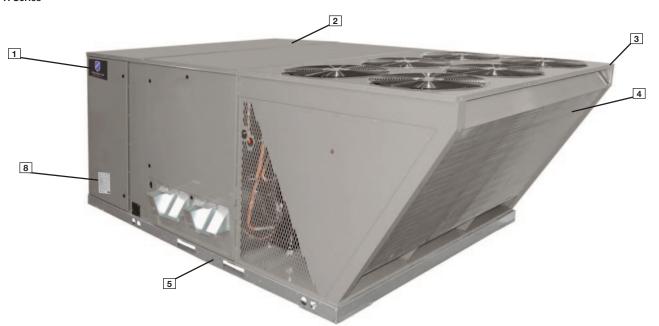


Friedrich® Commercial *K-Series*Packaged Gas Electric Unit

RKRL-H Series

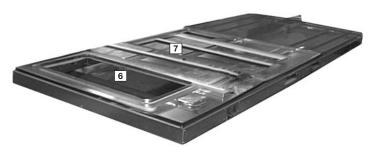
With ClearControl™ and VFD Technology Nominal Sizes 15 & 20 Tons [52.8 & 70.3 kW] ASHRAE 90.1-2019 Compliant

TABLE OF CONTENTS


Unit Features & Benefits	3-8
Model Number Identification	9
Options	10
Selection Procedure	11
General Data	
RKRL-H Series	12-16
General Data Notes	17
Gross Systems Performance Data	
RKRL-H Series	18-19
Indoor Airflow Performance	
RKRL-H Series	20-23
Electrical Data	
RKRL-H Series	24-25
Dimensional Data	26-32
Accessories	33-46
Mechanical Specifications	47-51
Limited Warranty	52

RKRL-H STANDARD FEATURES INCLUDE:

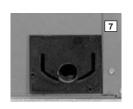
- R-410A HFC refrigerant.
- · Complete factory charged, wired and run tested.
- Scroll compressors with internal line break overload and high-pressure protection.
- Dual stage compressors.
- Convertible airflow vertical downflow or horizontal sideflow.
- TXV refrigerant metering system on each circuit.
- High Pressure and Low Pressure/Loss of charge protection standard on all models.
- Solid Core liquid line filter drier on each circuit.
- Single slab, single pass designed evaporator and condenser coils facilitate easy cleaning for maintaining high efficiencies.
- Cooling operation up to 125 degree F ambient.
- Foil faced insulation encapsulated throughout entire unit minimizes airborne fibers from the air stream.
- Hinged major access door with heavy-duty gasketing, 1/4 turn latches and door retainers.
- Slide Out Indoor fan assembly for added service convenience.
- Powder Paint Finish meets ASTMB117 steel coated on each side for maximum protection. G90 galvanized.
- Base pan with drawn supply and return opening for superior water management.
- · Forkable base rails for easy handling and lifting.
- Single point electrical connections and gas connections.

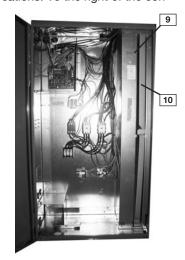

- Internally sloped slide out condensate pan conforms to ASHRAE 62 standards.
- High performance belt drive motor with variable pitch pulleys and quick adjust belt system.
- Permanently lubricated evaporator, condenser and gas heat inducer motors.
- Condenser motors are internally protected, totally enclosed with shaft down design.
- 2 inch filter standard with slide out design.
- Two stage gas valve direct spark ignition and induced draft for efficiency and reliability.
- Tubular heat exchange for long life and induced draft for efficiency and reliability.
- Solid state furnace control with on board diagnostics.
- 24 volt control system with resettable circuit breakers.
- Colored and labeled wiring.
- Copper tube/Aluminum evaporator coil.
- MicroChannel condenser coil.
- Factory Installed Direct Digital Control (DDC) and sensors which can connect to LonWorks™ or BACnet® BAS systems for remote monitoring and control.
- Variable Frequency Drive (VFD) meet ASHRAE 90.1-2010 and California Title 24.
- MERV 8 & MERV 13 filters are available as an accessory.
- · Standard Modbus interface.

Friedrich® Packaged equipment is designed from the ground up with the latest features and benefits required to compete in today's market. The clean design stands alone in the industry and is a testament to the quality, reliability, ease of installation and serviceability that goes into each unit. Outwardly, the large Friedrich Commercial Series™ label (1) identifies the brand to the customer.

The sheet-metal cabinet (2) uses nothing less than 20-gauge material for structural components with an underlying coat of G90. To ensure the leak-proof integrity of these units, the design utilizes a top with a 1/8" drip lip (3), gasket-protected panels and screws. The slanted outdoor coil protects the coil from hail damage (4). Every Friedrich packaged unit uses the toughest finish in the industry, using electro deposition baked-on enamel tested to withstand a rigorous 1000-hour salt spray test, per ASTM B117.

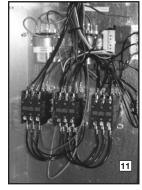
Anything built to last must start with the right foundation. In this case, the foundation is 14-gauge, commercial-grade, full-perimeter base rails (5), which integrate fork slots and rigging holes to save set-up time on the job site. The base pan is stamped, which forms a 1-1/8" flange around the supply and return opening and has eliminated the worry of water entering the conditioned space (6). The drainpan (7) is made of plastic that resists the growth of harmful bacteria and is sloped for the latest IAQ benefits. Furthermore, the drainpan slides out for easy cleaning. The insulation has been placed on the underside of the basepan, removing areas that would allow for potential moisture accumulation, which can facilitate growth of harmful bacteria. All insulation is secured with both adhesive and mechanical fasteners, and all edges are hidden.


During development, each unit was tested to U.L. 1995, ANSI 21.47, AHRI 340-360 and other Friedrich-required reliability tests. Friedrich adheres to stringent ISO 9001:2015 quality procedures, and each unit bears the U.L. and AHRI certification labels located on the unit nameplate (3). Contractors can rest assured that when a Friedrich packaged unit arrives at the job, it is ready to go with a factory charge and quality checks.


Access to all major compartments is from the front of the unit, including the filter and electrical compartment, blower compartment, furnace section, and outdoor section. Each panel is permanently embossed with the compartment name (control/filter access, blower access and furnace access).

Electrical and filter compartment access is through a large, toolless, hinged-access panel with 1/4 turn latches. On the outside of the panel is the unit nameplate, which contains the model and serial number, electrical data and other important unit information.

The unit charging chart is located on the inside of the electrical and filter compartment door. Electrical wiring diagrams are found on the control box cover, which allows contractors to move them to more readable locations. To the right of the con-


trol box the model and serial number can be found. Having this information on the inside will assure model identification for the life of the product. The production line quality test assurance label is also placed in this location (9). The two-inch throwaway filters (10) are easily removed on a tracked system for easy replacement.

Inside the control box (11), each electrical component is clearly identified with a label that matches the component to the wire diagram for ease of trouble shooting. All wiring is numbered on each end of the termination and color-coded to match the wiring diagram. The integrated furnace control, used to control furnace operation, incorporates a flashing LED troubleshooting device. Flash codes are clearly outlined on the unit wiring diagram. The control transformer has a low voltage circuit breaker that trips if a low voltage

electrical short occurs. There is a blower contactor and compressor contactor for each compressor.

As part of the ClearControl™ system which allows real time monitoring and communication between rooftop units, the RKRL-H Packaged Gas Electric Unit has a Rooftop Unit

Controller (RTU-C) factory mounted and wired in the control panel. The RTU-C is a solid-state microprocessor-based control board that provides flexible control and extensive diagnostics for all unit functions. The RTU-C through proportional/integral control algorithms perform specific unit functions that

govern unit operation in response to: zone conditions, system temperatures, system pressures, ambient conditions and electrical inputs. The RTU-C features a 16 x 2 character LCD display and a five-button keypad for local configuration and direct diagnosis of the system. New features include a clogged filter switch (CFS), fan proving switch (FPS), return air temperature sensor (RAT), discharge air temperature sensor (DAT) and outdoor air temperature sensor (OAT). Freeze sensors (FS) are used in place of freezestats to allow measurement of refrigerant suction line temperatures. The RKRL-H Package Gas/Electric with ClearControl™ is specifically designed to be applied in four distinct applications:

The RKRL-H is compatible with a third party building management system that supports the BACnet Application Specific Controller device profile, with the use of a field installed BACnet Communication Module. The BACnet Communication Module plugs into the unit RTU-C controller and allows communication between ClearControl™ and the BACnet MSTP or IP network. A zone sensor, a BACnet network zone sensor, a BACnet thermostat or DDC controller may be used to send the zone temperature or thermostat demands to the RTU-C. The BACnet Communication Module is compatible with MSTP EIA-485 daisy chain networks communicating at 38.4 bps. It is compatible with twisted pair, shielded cables.

The RKRL-H is compatible with a third party building management system that supports the LonMark Space Comfort Controller (SCC) functional profile or LonMark Discharge Air Controller (DAC) functional profile. This is accomplished with a field installed LonMark communication module. The LonMark Communication Module plugs onto the RTU-C controller and allows communication between ClearControl™ and a LonWorks Network. A zone sensor, a LonTalk network zone sensor, or a LonTalk thermostat or DDC controller may be used to send the zone temperature or thermostat demands to the RTU-C. The LonMark Communication Module utilizes an FTT-10A free topology transceiver communicating at 78.8 kbps. It is compatible with Echelon qualified twisted pair cable, Belden 8471 or NEMA Level 4 cables. The Module can communicate up to 1640 ft. with no repeater. The LonWorks limit of 64 nodes per segment applies to this device.

The RKRL-H is compatible with a programmable 24 volt thermostat. Connections are made via conventional thermostat screw terminals. Extensive unit status and diagnostics are displayed on the LCD screen of the RTU-C.

The RKRL-H is compatible with a zone sensor and mechanical or solid state time clock connected to the RTU-C. Extensive unit status and diagnostics are displayed on the LCD screen of the RTU-C.

A factory or field installed Comfort Alert® module is available for power phase-monitoring protection and additional compressor diagnostics. The alarms can be displayed on the RTU-C display, through the (BAS) network, or connected to the "L-Terminal" of a thermostat for notification.

Factory installed VFD (13) (variable frequency drive) supply fan optimizes energy usage year round by providing a lower speed for first stage cooling operation improving IEER's over the conventional constant fan system. Furthermore, operating in the constant fan mode at the reduced speed can use as little as 1/5th of the energy of a conventional constant fan system. Also, by operating at a lower speed on first stage cooling up to 51% more moisture is removed improving comfort during low load operation. The VFD equipped units meet California Title 24 and ASHRAE 90.1-2019 requirements for multi blower speed control. VFD also ramps up to the desire speed reducing stress on the supply fan components and reducing the noise from

13 G

sudden inrush of air. Because the airflow is cut in half during first stage cooling and constant fan operation, noise is much less during these modes of operation.


For added convenience in the field, a factory-installed convenience outlet and disconnect (14) are available. Low and High voltage can enter either from the side or through the base. Low-voltage connections are made through the low-voltage terminal strip. For ease of access, the U.L.-required low voltage barrier can be temporarily removed for low-voltage termination and then reinstalled. The high-voltage connection is terminated at the high-voltage terminal block. The suggested mounting for the field-installed disconnect is on the exterior side of the electrical control box.

In the outdoor section are the external gauge ports. ([15]). With gauge ports mounted externally, an accurate diagnostic of system operation can be performed quickly and easily.

The blower compartment is to the right of the control box and can be accessed by 1/4 turn latches. To allow easy maintenance of the blower assembly, the entire

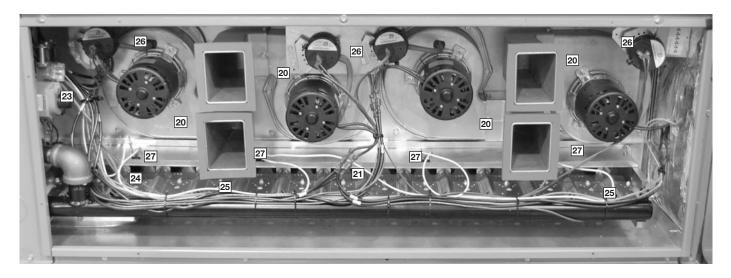
assembly easily slides out by removing four #10 screws from the blower assembly. The adjustable motor pulley (16) can easily be adjusted by loosening the bolts on either side of the motor mount. Removing the bolts allows for easy removal of the blower pulley by pushing the blower assembly up to loosen the belt. Once the belt is removed, the motor sheave can be adjusted to the desired number of turns, ranging from 1 to 6 turns open. Where the demands for the job require high static, Friedrich® has high-static drives available that deliver nominal airflow up to 2" of static. By referring to the airflow performance tables listed in the installation instructions, proper static pressure and CFM requirements can be dialed in. The scroll housing (17) and blower scroll provide quiet and efficient airflow. The blower sheave is secured by an "H" bushing which firmly secures the pulley to the blower shaft for years of troublefree operation. The "H" bushing allows for easy removal of the blower pulley from the shaft, as opposed to the use of a set screw, which can score the shaft, creating burrs that make blower-pulley removal difficult.

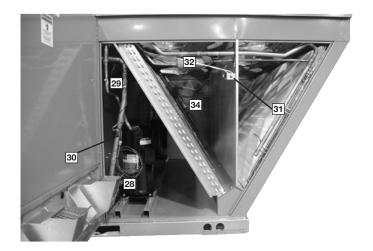
Also inside the blower compartment are the optional low-ambient controls (18). The lowambient controls allow for operation of the compressor down to 0 degrees ambient temperature by cycling the outdoor fans on high pressure. Use of polarized plugs and schrader fittings allow for easy field or factory installation. The freeze sensor clips on the suction line near the evaporator outlet. The freeze sensor protects the compressor if the evaporator coil gets too cold (below freezing) due to low airflow

and allows monitoring of the suction line temperature on the controller display.

Inside the blower compartment the interlaced evaporator can also be viewed. The evaporator uses enhanced fin technology for maximum heat transfer. The TXV metering device assures even distribution of refrigerant throughout the evaporator.

Wiring throughout the unit is neatly bundled and routed. Where wire harnesses go through the condenser bulkhead or blower deck, a molded wire harness assembly (19) provides an air-tight and water-tight seal, and provides strain relief. Care is also taken to tuck raw edges of insulation behind sheet metal to improve indoor air quality.

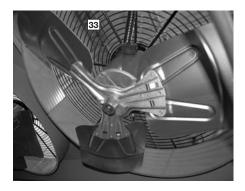

The furnace compartment contains the latest furnace technology on the market. The draft inducers (20) draw the flame from the Friedrich® exclusive in-shot burners (21) into the aluminized tubular heat exchanger (22) for clean, efficient gas heat. Stainless steel heat exchangers can be factory installed for those applications that have high fresh-air requirements, or applications in corrosive environments. Each furnace is equipped with a two-stage gas valve (23), which provides two stages of gas heat input. The first stage operates at 50% of the second stage (full fire). 81% steady state efficiency is maintained on both first and second stage by staging the multiple inducers to optimize the combustion airflow and maintain a near stoichiometric burn at each stage.



The direct spark igniter (24) assures reliable ignition in the most adverse conditions. This is coupled with remote flame sense (25) to assure that the flame has carried across the entire length of the burner assembly. Gas supply can be routed from the side or up through the base.

Each furnace has the following safety devices to assure consistent and reliable operation after ignition:

- Pressures switches (26) to assure adequate combustion airflow before ignition.
- Rollout switches (27) to assure no obstruction or cracks in the heat exchanger.
- A limit device that protects the furnace from over-temperature problems.



The compressor compartment houses the heartbeat of the unit. The scroll compressor (28) is known for its long life, and for reliable, quiet, and efficient operation. The suction and discharge lines are designed with shock loops (29) to absorb the strain and stress that the starting torque, steady state operation, and shut down cycle impose on the refrigerant tubing. Each compressor and circuit is independent for built-in redundancy, and each circuit is clearly marked throughout the system. Each unit has two stages of efficient cooling operation, first stage is approximately 50% of second stage.

The low-pressure switches (30) and high-pressure switches (31) are mounted on the appropriate refrigerant lines in the condenser section. The high-pressure switch will shut off the compressors if pressures exceeding 610 PSIG are detected as may occur if the outdoor fan motor fails. The low-pressure switches shut off the compressors if low pressure is detected due to loss of refrigerant charge. Each factory-installed option is brazed into the appropriate high or low side and wired appropriately. Use of polarized plugs allow for easy field inspection and repair.

Each unit comes standard with filter dryer (32). The condenser fan motor (33) can easily be accessed and maintained by removing the protective fan grille. The polarized plug connection allows the motor to be changed quickly and eliminates the need to snake wires through the unit. The outdoor coil uses the latest enhanced fin design (34) for the most effective method of heat transfer. The outdoor coil is slanted to protect it from Mother Nature.

Each unit is designed for both downflow or horizontal applications (35) for job configuration flexibility. The return air

Three models exists; two for downflow applications (a downflow economizer with factory installed smoke detector in the return section is available), and one for horizontal applications. Each unit is pre-wired for the economizer to allow guick plug-in installation. The downflow economizer is also available as a factoryinstalled option. Power Exhaust is easily field-installed. The economizer, which provides free cooling when outdoor conditions are suitable and also provides fresh air to meet local requirements, comes standard with single enthalpy controls. The

controls can be upgraded to dual enthalpy easily in the field. The

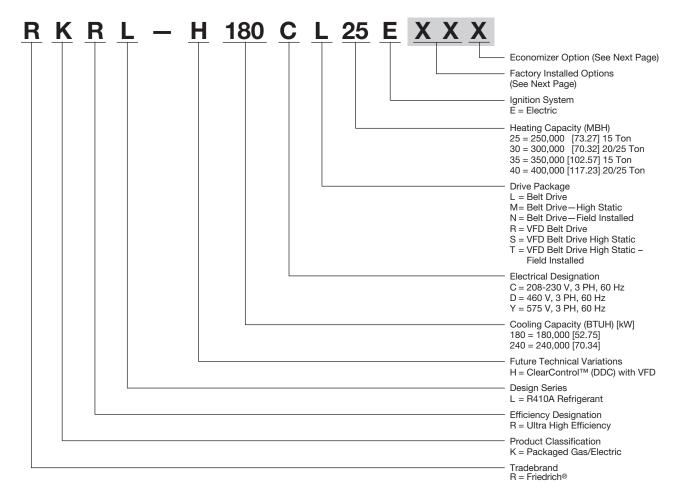
direct drive actuator combined with gear drive dampers has

eliminated the need for linkage adjustment in the field. The economizer control has a minimum position setpoint, an outdoor-air setpoint, a mix-air setpoint, and a CO2 setpoint. Barometric relief is standard on all economizers. The power exhaust is housed in the barometric

relief opening and is easily slipped in with a plug-in assembly. The wire harness to the economizer also has accommodations for a smoke detector.

The damper minimum position, actual damper position, power exhaust on/off setpoint, mixed air temperature limit setpoint and Demand Controlled Ventilation (DCV) setpoint can be read and adjusted at the unit controller display or remotely through a network connection.

The Space CO₂ level, mixed air temperature, and Economizer Status (Free Cooling Available, Single or Dual Enthalpy) can be read at the unit controller display or remotely through a network connection. Economizer Faults will trigger a


network Alarm and can be read at the unit controller display or remotely through a network connection.

37

FACTORY INSTALLED OPTION CODES FOR RKRL-H (15 & 20 TON) [52.8 & 70.3 kW]

Option Code	Hail Guard	Stainless Steel Heat Exchanger	Non-Powered Convenience Outlet/Unfused Service Disconnect	Low Ambient/ Comfort Alert
AA			NO OPTIONS	
AD	Х			
AJ		X		
AH			x	
AR				Х
BF	Х		X	
BG	Х	Х		
CY		X	X	X
JD	X			X
JB		X	х	
KA	Х	X		Х
DP	X	X	х	X

[&]quot;x" indicates factory installed option.

ECONOMIZER SELECTION FOR RKRL-H (15 & 20 TON) [52.8 & 70.3 kW]

Option Code	No Economizer	DDC Single Enthalpy Economizer* With Barometric Relief	DDC Single Enthalpy Economizer* With Barometric Relief and Smoke Detector
А	X		
Н		Х	
J			X

[&]quot;x" indicates factory installed option.

Instructions for Factory Installed Option(s) Selection

Note: Three characters following the model number will be utilized to designate a factory-installed option or combination of options. If no factory option(s) is required, nothing follows the model number.

Step 1. After a basic rooftop model is selected, choose a *two-character* option code from the FACTORY INSTALLED OPTION SELECTION TABLE.

Proceed to Step 2.

Step 2. The last option code character is utilized for factory-installed economizers. Choose a character from the FACTORY INSTALLED ECONOMIZER SELECTION TABLE.

Example: RKRL-H 240CL40E**XX**X (where **XX** is factory installed option)

Example: No Options

RKRL-H 240CL40E

Example: No option with factory installed economizer

RKRL-H 240CL40EAAH

Example: Options with low ambient and comfort alert, unwired convenience outlet, unfused service discon-

nect, and stainless steel heat exchanger with no factory installed economizer

RKRL-H 240CL40ECYA

Example: Options same as above with factory installed economizer

RKRL-H 240CL40ECYH

^{*}Downflow economizer only.

To select an RKRL-H Cooling and Heating unit to meet a job requirement, follow this procedure, with example, using data supplied in this specification sheet.

1. DETERMINE COOLING AND HEATING REQUIREMENTS AND SPECIFIC OPERATING CONDITIONS FROM PLANS AND SPECS.

Example: 208/240V - 3 Phase - 60 Hz Voltage-Total Cooling Capacity— 205,000 BTUH [60.0 kW] Sensible Cooling Capacity— 155,000 BTUH [45.4 kW] 235,000 BTUH [68.8 kW] Heating Capacity-*Condenser Entering Air-95°F [35.0°C] DB 65°F [18.3°C] WB *Evaporator Mixed Air Entering-78°F [25.6°C] DB *Indoor Air Flow (vertical) --7200 CFM [3398 L/s] *External Static Pressure-0.70 in. WG [.17 kPa]

2. SELECT UNIT TO MEET COOLING REQUIREMENTS.

Since total cooling is within the range of a nominal 20 ton [70.3 kW] unit, enter cooling performance table at 95°F [35.0°C] DB condenser inlet air. Interpolate between 63°F [17.2°C] WB and 67°F [19.4°C] to determine total and sensible capacity and power input for 65°F [18.3°C] WB evaporator inlet air at 7725 CFM [3645 L/s] indoor air flow (table basis):

Total Cooling Capacity = 238,250 BTUH [69.76 kW] Sensible Cooling Capacity = 192,550 BTUH [56.38 kW] Power Input (Compressor and Cond. Fans) = 18,200 watts

Use formula in note ① to determine sensible capacity at 78°F [25.6°C] DB evaporator entering air:

 $192,550 + (1.10 \times 7,200 \times (1 - 0.11) \times (78 - 80))$ Sensible Cooling Capacity = 178,452 BTUH [52.25 kW]

CORRECT CAPACITIES OF STEP 2 FOR ACTUAL AIR FLOW.

Select factors from airflow correction table at 7200 CFM [3398 L/s] and apply to data obtained in step 2 to obtain gross capacity:

Total Capacity = $238,250 \times 0.99 = 235,868$ BTUH [69.06 kW] Sensible Capacity = $178,452 \times 0.96 = 171,314$ BTUH [50.16 kW] Power Input = $18,200 \times 0.99 = 18,018$ Watts

These are Gross Capacities, not corrected for blower motor heat or power.

4. DETERMINE BLOWER SPEED AND WATTS TO MEET SYSTEM DESIGN.

Enter Indoor Blower performance table at 7200 CFM [3398 L/s]. Total ESP (external static pressure) per the spec of 0.70 in. WG [.17 kPa] includes the system duct and grilles. Add from the table "Component Air Resistance," 0.01 in. WG [.00 kPa] for wet coil, 0.08 in. WG [.02 kPa] for downflow air flow, for a total selection static pressure of 0.79 (0.8) in. WG [.20 kPa], and determine:

RPM = 739 WATTS = 2,862 DRIVE = L (standard 5 H.P. motor)

5. CALCULATE INDOOR BLOWER BTUH HEAT EFFECT FROM MOTOR WATTS, STEP 4.

2,862 x 3.412 = 9,765 BTUH [2.86 kW]

6. CALCULATE NET COOLING CAPACITIES, EQUAL TO GROSS CAPACITY, STEP 3, MINUS INDOOR BLOWER MOTOR HEAT.

Net Total Capacity = 235,868 - 9,765 = 226,103 BTUH [66.21 kW] Net Sensible Capacity = 171,314 - 9,765 = 161,549 BTUH [47.30 kW]

7. CALCULATE UNIT INPUT AND JOB EER.

Total Power Input = 18,018 (step 3) + 2,862 (step 4) = 20,880 Watts

 $EER = \frac{\text{Net Total BTUH [kW] (step 6)}}{\text{Power Input, Watts (above)}} = \frac{226,103}{20,880} = 10.83$

8. SELECT UNIT HEATING CAPACITY.

From Physical Data Table read that gas heating output (input rating x efficiency) is:

Heating Capacity = 243,000 BTUH [71.2 kW]

9. CHOOSE MODEL RKRL-H240CL30E.

*NOTE: These operating conditions are typical of a commercial application in a 95°F/79°F [35°C/26°C] design area with indoor design of 76°F [24°C] DB and 50% RH and 10% ventilation air, with the unit roof mounted and centered on the zone it conditions by ducts.

Model RKRL- Series (with VFD)	H180CR25E	H180CR35E	H180CS25E	H180CS35E
Cooling Performance ^A				CONTINUED
Gross Cooling Capacity Btu [kW]	178,000 [50.63]	178,000 [50.63]	178,000 [50.63]	178,000 [50.63]
EER	11.6	11.6	11.6	11.6
IEERB	14	14	14	14
Nominal CFM/AHRI Rated CFM [L/s]	6000/5500 [2831/2595]	6000/5500 [2831/2595]	6000/5500 [2831/2595]	6000/5500 [2831/2595]
AHRI Net Cooling Capacity Btu [kW]	172,000 [48.92]	172,000 [48.92]	172,000 [48.92]	172,000 [48.92]
Net Sensible Capacity Btu [kW]	126,000 [35.84]	126,000 [35.84]	126,000 [35.84]	126,000 [35.84]
Net Latent Capacity Btu [kW]	46,000 [13.08]	46,000 [13.08]	46,000 [13.08]	46,000 [13.08]
Net System Power kW	14.83	14.83	14.83	14.83
Heating Performance (Gas) ^C				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	125.000/250.000 [36.62/73.25]	175.000/350.000 [51.27/102.55]	125.000/250.000 [36.62/73.25]	175,000/35,000 [51.27/10.25]
Heating Output Btu [kW] (1st Stage / 2nd Stage)				
Temperature Rise Range °F [°C]	15-45 [8.3-25] /	30-60 [16.7-33.3] /	15-45 [8.3-25] /	30-60 [16.7-33.3] /
(1st Stage / 2nd Stage)	15-45 [8.3-25]	30-60 [16.7-33.3]	15-45 [8.3-25]	30-60 [16.7-33.3]
Steady State Efficiency (%)	81	81	81	81
No. Burners	10	14	10	14
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
Compressor	0.10 [10]	0.70 [10]	3.70 [10]	00 [10]
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB)D	91	91	91	91
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
Tube Size in. [mm] OD	1 [25.4]	1 [25.4]	1 [25.4]	1 [25.4]
Face Area sq. ft. [sq. m]	50.8 [4.72]	50.8 [4.72]	50.8 [4.72]	50.8 [4.72]
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]
ndoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	3/24 [609.6]	3/24 [609.6]	3/24 [609.6]	3/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	10000 [4719]	10000 [4719]	10000 [4719]	10000 [4719]
No. Motors/HP	3 at 1/3 HP	3 at 1/3 HP	3 at 1/3 HP	3 at 1/3 HP
Motor RPM	1075	1075	1075	1075
ndoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
No. Motors	omgic / Munipic	olligio / Waltiplo	1	omgic / ividitipic
	1	1	5	5
Motor HP	3	3		
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	56	184	184
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	170/173 [4820/4905]	170/173 [4820/4905]	170/173 [4820/4905]	170/173 [4820/4905]
Weights				
Net Weight lbs. [kg]	2021 [917]	2035 [923]	2059 [934]	2073 [940]
Ship Weight lbs. [kg]	2147 [974]	2162 [981]	2185 [991]	2200 [998]
See Page 17 for Notes.			f 10	gnates Metric Conversion

Model RKRL- Series (with VFD)	H180DR25E	H180DR35E	H180DS25E	H180DS35E
Cooling Performance ^A				CONTINUED —
Gross Cooling Capacity Btu [kW]	178,000 [50.63]	178,000 [50.63]	178,000 [50.63]	178,000 [50.63]
EER	11.6	11.6	11.6	11.6
IEERB	14	14	14	14
Nominal CFM/AHRI Rated CFM [L/s]	6000/5500 [2831/2595]	6000/5500 [2831/2595]	6000/5500 [2831/2595]	6000/5500 [2831/2595]
AHRI Net Cooling Capacity Btu [kW]	172,000 [48.92]	172,000 [48.92]	172,000 [48.92]	172,000 [48.92]
Net Sensible Capacity Btu [kW]	126,000 [35.84]	126,000 [35.84]	126,000 [35.84]	126,000 [35.84]
Net Latent Capacity Btu [kW]	46,000 [13.08]	46,000 [13.08]	46,000 [13.08]	46,000 [13.08]
Net System Power kW	14.83	14.83	14.83	14.83
Heating Performance (Gas) ^C				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	125,000/250,000 [36.62/73.25]	175,000/350,000 [51.27/102.55]] 125,000/250,000 [36.62/73.25]	175,000/350,000 [51.27/102
Heating Output Btu [kW] (1st Stage / 2nd Stage)	101,500/203,000 [29.74/59.48]	142,000/284,000 [41.61/83.21]	101,500/203,000 [29.74/59.48]	142,000/284,000 [41.61/83.
Temperature Rise Range °F [°C]	15-45 [8.3-25] /	30-60 [16.7-33.3] /	15-45 [8.3-25] /	30-60 [16.7-33.3] /
(1st Stage / 2nd Stage)	15-45 [8.3-25]	30-60 [16.7-33.3]	15-45 [8.3-25]	30-60 [16.7-33.3]
Steady State Efficiency (%)	81	81	81	81
No. Burners	10	14	10	14
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
Compressor	0.70 [10]	0.10 [10]	0.10 [10]	0.70 [10]
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ^D	91	91	91	91
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
Tube Size in. [mm] OD	1 [25.4]	1 [25.4]	1 [25.4]	1 [25.4]
Face Area sq. ft. [sq. m]	50.8 [4.72]	50.8 [4.72]	50.8 [4.72]	50.8 [4.72]
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	3/24 [609.6]	3/24 [609.6]	3/24 [609.6]	3/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	10000 [4719]	10000 [4719]	10000 [4719]	10000 [4719]
No. Motors/HP	3 at 1/3 HP	3 at 1/3 HP	3 at 1/3 HP	3 at 1/3 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
No. Motors	1	1	1	1
Motor HP	3	3	5	5
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	56	184	184
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508
<u> </u>				
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	170/173 [4820/4905]	170/173 [4820/4905]	170/173 [4820/4905]	170/173 [4820/4905]
Weights				
Net Weight lbs. [kg]	2021 [917]	2035 [923]	2059 [934]	2073 [940]
Ship Weight lbs. [kg]	2147 [974]	2162 [981]	2185 [991]	2200 [998]

See Page 17 for Notes.

Nodel RKRL- Series (with VFD)	H240CR30E	
ooling Performance ^A		CONTINUE
Gross Cooling Capacity Btu [kW]	242,000 [68.83]	
EER	11.6	
IEER B	14	
Nominal CFM/AHRI Rated CFM [L/s]	8000/7375 [3775/3480]	
AHRI Net Cooling Capacity Btu [kW]	228,000 [64.85]	
Net Sensible Capacity Btu [kW]	167,000 [47.50]	
Net Latent Capacity Btu [kW]	63,000 [17.92]	
Net System Power kW	19.66	
eating Performance (Gas) ^c	13.00	
	150 000/200 000 [42 05/87 0]	
Heating Input Btu [kW] (1st Stage / 2nd Stage)		
Heating Output Btu [kW] (1st Stage / 2nd Stage)		
Temperature Rise Range °F [°C] (1st Stage / 2nd Stage)	15-45 [8.3-25] / 15-45 [8.3-25]	
	81	
Steady State Efficiency (%)		
No. Burners	12	
No. Stages	2	
Gas Connection Pipe Size in. [mm]	0.75 [19]	
ompressor		
No./Type	2/Scroll	
utdoor Sound Rating (dB) ^D	91	
utdoor Coil—Fin Type	Louvered	
Tube Type	MicroChannel	
Tube Size in. [mm] OD	1 [25.4]	
Face Area sq. ft. [sq. m]	50.8 [4.72]	
Rows / FPI [FPcm]	1 / 23 [9]	
door Coil—Fin Type	Louvered	
Tube Type	Rifled	
Tube Size in. [mm]	0.375 [9.5]	
Face Area sq. ft. [sq. m]	26.67 [2.48]	
Rows / FPI [FPcm]	4 / 15 [6]	
Refrigerant Control	TX Valves	
Drain Connection No./Size in. [mm]	1/1 [25.4]	
tdoor Fan—Type	Propeller	
No. Used/Diameter in. [mm]	6/24 [609.6]	
Drive Type/No. Speeds	Direct/1	
CFM [L/s]	19800 [9344]	
No. Motors/HP	6 at 1/3 HP	
Motor RPM	1075	
door Fan—Type	FC Centrifugal	
No. Used/Diameter in. [mm]	2/18x9 [457x229]	
Drive Type	Belt (Adjustable)	
No. Speeds (Standard / VFD)	Single / Multiple	
No. Motors	1	
Motor HP	5	
Motor RPM	1725	
Motor Frame Size		
	184	
Iter—Type	Disposable	
Furnished	Yes	
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	
efrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	271/227 [7683/6435]	
/eights		
Net Weight lbs. [kg]	2289 [1038]	
Ship Weight lbs. [kg]	2389 [1084]	

14

Model RKRL- Series (with VFD)	H240CR40E	H240CS30E	H240CS40E	H240DR30E
Cooling Performance ^A				CONTINUED -
Gross Cooling Capacity Btu [kW]	242,000 [68.83]	242,000 [68.83]	242,000 [68.83]	242,000 [68.83]
EER	11.6	11.6	11.6	11.6
IEER ^B	14	14	14	14
Nominal CFM/AHRI Rated CFM [L/s]	8000/7375 [3775/3480]	8000/7375 [3775/3480]	8000/7375 [3775/3480]	8000/7375 [3775/3480]
AHRI Net Cooling Capacity Btu [kW]	228,000 [64.85]	228,000 [64.85]	228,000 [64.85]	228,000 [64.85]
Net Sensible Capacity Btu [kW]	167,000 [47.50]	167,000 [47.50]	167,000 [47.50]	167,000 [47.50]
Net Latent Capacity Btu [kW]	63,000 [17.92]	63,000 [17.92]	63,000 [17.92]	63,000 [17.92]
Net System Power kW	19.66	19.66	19.66	19.66
Heating Performance (Gas) ^c				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	200,000/400,000 [58.6/117.2]	150,000/300,000 [43.95/87.9]	200,000/400,000 [58.6/117.2]	150,000/300,000 [43.95/87.
Heating Output Btu [kW] (1st Stage / 2nd Stage)	162,000/324,000 [47.47/94.93]	121,500/243,000 [35.6/71.2]	162,000/324,000 [47.47/94.93]	121,500/243,000 [35.6/71.2
Temperature Rise Range °F [°C] (1st Stage / 2nd Stage)	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	15-45 [8.3-25] / 15-45 [8.3-25]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	15-45 [8.3-25] / 15-45 [8.3-25]
Steady State Efficiency (%)	81	81	81	81
No. Burners	14	12	14	12
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
Compressor				
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ^D	91	91	91	91
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
Tube Size in. [mm] OD	1 [25.4]	1 [25.4]	1 [25.4]	1 [25.4]
Face Area sq. ft. [sq. m]	50.8 [4.72]	50.8 [4.72]	50.8 [4.72]	53.3 [4.95]
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]
ndoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	19800 [9344]	19800 [9344]	19800 [9344]	19800 [9344]
No. Motors/HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP
Motor RPM	1075	1075	1075	1075
ndoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
No. Motors	1	1	1	1
Motor HP	5	7 1/2	7 1/2	5
Motor RPM	1725	1725	1725	1725
Motor Frame Size	184	213	213	184
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	271/227 [7683/6435]	271/227 [7683/6435]	271/227 [7683/6435]	271/227 [7683/6435]
Weights	, [. 000, 0.00]	[, 000, 0, 100]	[. 000, 0 .00]	[. 000, 0.00]
Net Weight lbs. [kg]	2303 [1045]	2327 [1056]	2341 [1062]	2289 [1038]
Ship Weight lbs. [kg]	2403 [1090]	2427 [1101]	2441 [1107]	2389 [1084]
Sinh Meiðir ing. [kð]	2400 [1090]	2421 [1101]		nates Metric Convers

See Page 17 for Notes.

Model RKRL- Series (with VFD)	H240DR40E	H240DS30E	H240D\$40E	
Cooling Performance ^A				
Gross Cooling Capacity Btu [kW]	242,000 [68.83]	242,000 [68.83]	242,000 [68.83]	
EER	11.6	11.6	11.6	
IEERB	NA	14	14	
Nominal CFM/AHRI Rated CFM [L/s]	8000/7375 [3775/3480]	8000/7375 [3775/3480]	8000/7375 [3775/3480]	
AHRI Net Cooling Capacity Btu [kW]	228,000 [64.85]	228,000 [64.85]	228,000 [64.85]	
Net Sensible Capacity Btu [kW]	167,000 [47.50]	167,000 [47.50]	167,000 [47.50]	
Net Latent Capacity Btu [kW]	63,000 [17.92]	63,000 [17.92]	63,000 [17.92]	
Net System Power kW	19.66	19.66	19.66	
eating Performance (Gas) ^c				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	200,000/400,000 [58.6/117.2]	150,000/300,000 [43.95/87.9]	200,000/400,000 [58.6/117.2]	
Heating Output Btu [kW] (1st Stage / 2nd Stage)	162,000/324,000 [47.47/94.93]	121,500/243,000 [35.6/71.2]	162,000/324,000 [47.47/94.93]	
Temperature Rise Range °F [°C] (1st Stage / 2nd Stage)	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	15-45 [8.3-25] / 15-45 [8.3-25]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	
Steady State Efficiency (%)	81	81	81	
No. Burners	14	12	14	
No. Stages	2	2	2	
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	
ompressor				
No./Type	2/Scroll	2/Scroll	2/Scroll	
utdoor Sound Rating (dB) ^D	91	91	91	
utdoor Coil—Fin Type	Louvered	Louvered	Louvered	
Tube Type	MicroChannel	MicroChannel	MicroChannel	
Tube Size in. [mm] OD	1 [25.4]	1 [25.4]	1 [25.4]	
Face Area sq. ft. [sq. m]	50.8 [4.72]	50.8 [4.72]	50.8 [4.72]	
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	
ndoor Coil—Fin Type	Louvered	Louvered	Louvered	
Tube Type	Rifled	Rifled	Rifled	
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	
Rows / FPI [FPcm]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]	
Refrigerant Control	TX Valves	TX Valves	TX Valves	
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	
utdoor Fan—Type	Propeller	Propeller	Propeller	
No. Used/Diameter in. [mm]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]	
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	
CFM [L/s]	19800 [9344]	19800 [9344]	19800 [9344]	
No. Motors/HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP	
Motor RPM	1075	1075	1075	
ndoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	
No. Motors	1	1	1	
Motor HP	5	7 1/2	7 1/2	
Motor RPM	1725	1725	1725	
Motor Frame Size	184	184	213	
ilter—Type	Disposable	Disposable	Disposable	
Furnished	Yes	Yes	Yes	
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	271/227 [7683/6435]	271/227 [7683/6435]	271/227 [7683/6435]	
Veights	<u> </u>	- ·		
Net Weight Ibs. [kg]	2303 [1045]	2327 [1056]	2341 [1062]	

See Page 17 for Notes.

NOTES:

- A. Cooling Performance is rated at 95° F ambient, 80° F entering dry bulb, 67° F entering wet bulb. Gross capacity does not include the effect of fan motor heat. AHRI capacity is net and includes the effect of fan motor heat. Units are suitable for operation to ±20% of nominal cfm. Units are—— certified in accordance with the Unitary Air Conditioner Equipment certification program, which is based on AHRI Standard 210/240 or 340/360.
- B. EER and Integrated Energy Efficiency Ratio (IEER) are rated at AHRI conditions in accordance with AHRI Standard 340/360.
- C. Heating Performance limit settings and rating data were established and approved under laboratory test conditions using American National Standard Institute standards. Ratings shown are for elevations up to 2000 feet. For elevations above 2000 feet, ratings should be reduced at the rate of 4% for each 1000 feet above sea level.
- D. Outdoor Sound Rating shown is tested in accordance with AHRI Standard 270.

GROSS SYSTEMS PERFORMANCE DATA-H180

				EN	TERING INDOC	R AIR @ 80°F	[26.7°C] dbE ①)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
	CI	FM [L/s]	6050 [2855]	5500 [2596]	4675 [2206]	6050 [2855]	5500 [2596]	4675 [2206]	6050 [2855]	5500 [2596]	4675 [2206]
		DR ①	.11	.09	.06	.11	.09	.06	.11	.09	.06
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	215.9 [63.3] 111.3 [32.6] 9.6	212.1 [62.1] 106.4 [31.2] 9.5	206.3 [60.4] 98.9 [29] 9.4	202.4 [59.3] 147.8 [43.3] 9.3	198.8 [58.2] 141.2 [41.4] 9.2	193.3 [56.7] 131.3 [38.5] 9.1	192.6 [56.4] 181 [53.0] 9.0	189.2 [55.4] 172.9 [50.7] 8.9	184 [53.9] 160.8 [47.1] 8.8
	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	212 [62.1] 109.8 [32.2] 10.4	208.2 [61.0] 104.9 [30.7] 10.3	202.5 [59.3] 97.5 [28.6] 10.2	198.4 [58.1] 146.2 [42.8] 10.1	194.8 [57.1] 139.7 [40.9] 10.0	189.5 [55.5] 129.9 [38.1] 9.9	188.6 [55.3] 179.4 [52.6] 9.8	185.3 [54.3] 171.4 [50.2] 9.7	180.2 [52.8] 159.4 [46.7] 9.6
O U T	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	207.2 [60.7] 107.8 [31.6] 11.3	203.5 [59.6] 103 [30.2] 11.2	198 [58] 95.8 [28.1] 11.0	193.7 [56.8] 144.2 [42.3] 11.0	190.2 [55.7] 137.8 [40.4] 10.9	185 [54.2] 128.1 [37.5] 10.7	183.9 [53.9] 177.4 [52.0] 10.7	180.6 [52.9] 169.5 [49.7] 10.6	175.7 [51.5] 157.6 [46.2] 10.5
D 0 0 R	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	201.8 [59.1] 105.4 [30.9] 12.2	198.2 [58.1] 100.7 [29.5] 12.1	192.8 [56.5] 93.6 [27.4] 11.9	188.2 [55.2] 141.8 [41.6] 11.9	184.9 [54.2] 135.5 [39.7] 11.8	179.8 [52.7] 126 [36.9] 11.6	178.5 [52.3] 175 [51.3] 11.6	175.3 [51.4] 167.2 [49.0] 11.5	170.5 [50.0] 155.5 [45.6] 11.4
D R Y B U	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	195.6 [57.3] 102.6 [30.1] 13.1	192.1 [56.3] 98 [28.7] 13.0	186.9 [54.8] 91.2 [26.7] 12.8	182.1 [53.4] 139 [40.7] 12.9	178.8 [52.4] 132.8 [38.9] 12.7	173.9 [51.0] 123.5 [36.2] 12.6	172.3 [50.5] 172.2 [50.5] 12.6	169.2 [49.6] 164.5 [48.2] 12.5	164.6 [48.2] 153 [44.8] 12.3
L B T E	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	188.7 [55.3] 99.4 [29.1] 14.2	185.3 [54.3] 95 [27.8] 14.0	180.3 [52.8] 88.3 [25.9] 13.8	175.2 [51.3] 135.8 [39.8] 13.9	172 [50.4] 129.8 [38.0] 13.7	167.3 [49.0] 120.7 [35.4] 13.6	165.4 [48.5] 165.4 [48.5] 13.6	162.4 [47.6] 161.5 [47.3] 13.5	158 [46.3] 150.2 [44.0] 13.3
M P E R	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	181.1 [53.1] 95.8 [28.1] 15.2	177.8 [52.1] 91.6 [26.8] 15.1	173 [50.7] 85.1 [25] 14.9	167.5 [49.1] 132.2 [38.8] 14.9	164.5 [48.2] 126.3 [37.0] 14.8	160 [46.9] 117.5 [34.4] 14.6	157.7 [46.2] 157.7 [46.2] 14.6	154.9 [45.4] 154.9 [45.4] 14.5	150.7 [44.2] 147 [43.1] 14.3
A T U R E	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	172.7 [50.6] 91.9 [26.9] 16.3	169.6 [49.7] 87.8 [25.7] 16.2	165 [48.3] 81.6 [23.9] 16	159.1 [46.6] 128.3 [37.6] 16.1	156.3 [45.8] 122.5 [35.9] 15.9	152 [44.5] 114 [33.4] 15.7	149.4 [43.8] 149.4 [43.8] 15.8	146.7 [43.0] 146.7 [43.0] 15.6	142.7 [41.8] 142.7 [41.8] 15.4
°F [°C]	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	163.6 [47.9] 87.5 [25.6] 17.5	160.6 [47.1] 83.6 [24.5] 17.4	156.3 [45.8] 77.7 [22.8] 17.1	150 [44.0] 123.9 [36.3] 17.2	147.3 [43.2] 118.4 [34.7] 17.1	143.3 [42.0] 110.1 [32.3] 16.8	140.2 [41.1] 140.2 [41.1] 16.9	137.7 [40.4] 137.7 [40.4] 16.8	134 [39.3] 134 [39.3] 16.6
	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	153.7 [45] 82.7 [24.2] 18.7	151 [44.2] 79 [23.2] 18.6	146.9 [43.0] 73.5 [21.5] 18.3	140.2 [41.1] 119.1 [34.9] 18.4	137.7 [40.3] 113.8 [33.3] 18.3	133.9 [39.2] 105.8 [31] 18.0	130.4 [38.2] 130.4 [38.2] 18.2	128.1 [37.5] 128.1 [37.5] 18.0	124.6 [36.5] 124.6 [36.5] 17.8
	125 [51.7]	Total BTUH [kW] Sens BTUH [kW] Power	143.1 [41.9] 77.5 [22.7] 20.0	140.6 [41.2] 74.1 [21.7] 19.8	136.7 [40.1] 68.9 [20.2] 19.6	129.6 [38.0] 113.9 [33.4] 19.7	127.3 [37.3] 108.9 [31.9] 19.5	123.8 [36.3] 101.2 [29.7] 19.3	119.8 [35.1] 119.8 [35.1] 19.4	117.7 [34.5] 117.7 [34.5] 19.3	114.5 [33.5] 114.5 [33.5] 19.0

DR —Depression ratio
dbE —Entering air dry bulb
wbE—Entering air wet bulb

Total —Total capacity x 1000 BTUH Sens —Sensible capacity x 1000 BTUH Power —KW input

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding $[1.10 \times CFM \times (1 - DR) \times (dbE - 80)]$.

GROSS SYSTEMS PERFORMANCE DATA-H240

					ITERING INDOC	R AIR @ 80°F)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		FM [L/s]	8030 [3790]	7300 [3445]	6205 [2928]	8030 [3790]	7300 [3445]	6205 [2928]	8030 [3790]	7300 [3445]	6205 [2928]
L		DR ①	.01	.08	.05	.01	.08	.05	.01	.08	.05
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2
	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2
0 U T	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2
D O O R	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2
D R Y B U	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2
L B T E	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2
M P E R	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2
A T U R	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2
°F [°C]	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2
	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2
	125 [51.7]	Total BTUH [kW] Sens BTUH [kW] Power	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2

DR —Depression ratio dbE —Entering air dry bulb

Total —Total capacity x 1000 BTUH Sens —Sensible capacity x 1000 BTUH

wbE—Entering air wet bulb

Power —KW input

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding $[1.10 \times CFM \times (1 - DR) \times (dbE - 80)]$.

AIRFLOW PERFORMANCE — 15 TON [52.8 kW]-SIDEFLOW

	Ź	odel F	Model RKRL-H180 Voltage 208/230, 460, 575 — 3 Phase	H 28 28	2	Itage 1	208/2.	30, 46	0, 57	5	3 Phas	Se.																											
All																Exter	rnal S	tatic	Pressu	External Static Pressure—Inches of Water [kPa]	nches	of W	ater [kPa]															
CEM [1 /c]	0.1	[.02]	0.1 [.02] 0.2 [.05] 0.3 [.07] 0.4 [.10] 0.5 [.12] 0.6 [.15] 0.7	.05]	0.3	<u> </u>	14[10]	.5[.1	12] 0	1.6[.1	5]		[.17]	.8[.2	0	.9[.2	7] 1	0.8 [.20] 0.9 [.22] 1.0 [.25]	5]	1[.27	1.1 [.27] 1.2 [.30]	2[.30	1.3	1.3 [.32]	1.4	1.4 [.35]	1.5 [.37]	.37]	1.6 [.40] 1.7 [.42] 1.8 [.45] 1.9 [.47]	.40]	1.7[.	42] 1	1.8[.4	5.	9 [.47	7.	2.0 [.50]	_
()	RPM	M	RPM W	×	RPIM	W	PM	W	ΡM	W	PM	W	RPM	W RPM		WRF	RPM \	W	RPM W	N RPM		W RPM	W	RPM	W	W RPM	≥	RPM	≥	RPM	8	RPM	M R	RPM	W RPM	M	/ RPM	×	
4800 [2265]	<u> — [c</u>	-	1	1	Ι	_	<u> </u>	· -	<u> </u>	9 —	583 13	1393 608	308 1	1508 6	632 16	1621 6	656 17	1732 6	:79 18	679 1841 701 1947	11 16	47 72,	723 2052 744 2154	52 74	1 215	4 764	2254	282	2254 785 2326 805 2430	802		825 2537		844 2	2647 8	863 2761	31 881	1 2878	œ
5000 [2359]	<u> </u>	I	I	I	ı	1	1	1	Ī	_ 2	291 17	1476 616	316 1	1593 6	640 1707		663 18	1820 6	86 15	686 1930 708		2038 729	729 2145 750 2248	12 12) 224	8 771	2350	791	2420 811	811	2528	830 2640	8 049	820 5.	2755 8	868 28	2873 887	7 2995	2
5200 [2454]	4]	1	I	Ι	Ι	_	1	- 2	775 1	575 1442 600 1562 624	300	562 E	324 1	1681 6	648 17	1797 6.	671 13	1911 6	93 20	693 2023 715	15 21	2133 736	736 2241	11 757	7 2346	22.9	777 2410	797	2520	817 2633	2633	988	2749 8	855 2	5869 8.	874 2992	32 892	2 3118	8
5400 [2548]	3]	1	I	I	I	1	ı	1	183	583 1530 608 1652 632	308	652 €		1772 6	655 18	1890 6	678 20	2005 7	.01	701 2119 722	22 2231	31 743	3 23	2340 764	1 2447	7 784	2512	2512 804	2626	823	2744	842	2865	861 2	2989 8	879 3117	17 897	7 3248	∞
5600 [2643]	3]	١	I	Ι	1		1	- 2	192 1	592 1621 616 1745 640	316 17	745 6		1866 6	663 16	1986 68	686 21	2103 7	708 2218	218 729	29 2331	31 750	0 2442	12 770) 2551		2620	791 2620 810	2739	830	2861	849	2987	867 3	3116 8	885 32	3248 903	3 3384	4
5800 [2737]	- [2	I	I	I	I		576 1	1588 601 1715 625 1840 649	301	715 6	325 18	840 €	349 1;	1964 6	672 20	2085 69	694 22	2204 7	716 2321	321 737	37 2436	36 757	7 2548	877 81	3 2614	4 798	273	817	2858 836	836	2985	855 3116		873 3	3249 8	891 3386	606 98	9 3527	7
6000 [2831]	1]	1	I	Ι	Ι	-	585 1	1683 610 1813 634	310 1	813 6	334 11	1940 657		2065 6	680 21	2187 70	702 23	2308 7	24 24	724 2426 744	14 2543	43 765	5 2657	785	5 2731	1 805	285	824	2984 843	843	3116	861	3251	879 3	8 6888	897 3531	31 914	4 3676	9
6200 [2926]	- [6	I	I	I	570 1650		595 1	1783 619 1913 643 2042	319 1	913 6	343 21	042 6	.2 999	2169 6	688 22	2293 7	710 24	2415 7	731 25	2535 752	52 2653	53 773	3 2728	28 792	2854	4 812	2984	831	3116	820	253	898	3392	886 3	3535 9	903 3682	32 920	0 3832	22
6400 [3020]	<u> </u>	I	I	ı	2.629	579 1750 604	304 1	1885 628 2017 652 2148 674	328 2	017 6	352 2	148 6		2276 6	697 24	2402 7	718 25	2526 7	739 2648	348 760	30 2767	87 78	780 2852	2 800) 2983	3 819	3118	838	325	856	396	875	3541	892 3	3688	606 3836	39 926	6 3994	4
6600 [3114]	4]	I	I	Ι	289	589 1854 614 1991 637 2125 661 2257	514 1	1991	337 2	125 6	361 25	257 (683 23	386 7	2386 705 2514	514 7.	727 26	340 7	2640 748 2763	292 292	38 28	2884 78	788 2984	808	3 3119	9 827	3258	845	3400 863	863	3546	881	3692	899 3	3847 9	916 4003)3	_	
6800 [3209]	<u> </u>	I	574	1822	266	574 1822 599 1961 623 2099 647 2235 670 2369 692	523 2	3 660	347 2	235 6	370 2	369		2009	2500 714 2629	329 7.	735 27	2756 7	56 28	756 2882 776	76 29	2984 796 3121	912	21 815	3262	2 834	3405	853	3552	3552 871 3702		888	3826	905 4	4013 93	922 4173	73	_	
7000 [3303]	3]	1	584	1930	7 609	584 1930 609 2072 633 2211 656 2349 679 2484 701	533 2	211 6	356 2	349 6	379 24	484 7		2617 7	723 2748 744	7 48 7.	.44 28	2877 7	64 30	764 3003 785	35 3124	24 80	804 3265	55 823	3 3410	0 842	3228	860	3710 878	878	3865	7 268	4024 6	912 4	4185 93	929 4350	20	_	Ι.
[7200 [3398]] 570 [1897] 595 [2042] 619 [2185] 643 [2327] 666 [2466] 689 [2602] 711	3] 270	1897	262	2042	619 2	2185 t	543 2	327 (366 2	466 6	389 21	602 7		2737 7	32 28	370 7.	.53 _{3C}	2000	73 31	732 [2870] 753 [3000] 773 [3127] 793 [3270] 812 [3416] 831 [3566] 849 [3719] 868 [3875] 885 [4035] 902 [4198]	33 32.	70 81,	2 347	.83	326	6 849	3715	898	3875	882	4035	905 4		919 4	4364 -	-		_	
The state of the s	4-1 1	- 1 3 - 1.	14 15			3 - 1 - 1 -	1 1 1 1																																ı

NOTE: L-Drive left of bold line, M-Drive right of bold line.

_	_	_	_	_	
				9	775
				2	808
	[8.5]	HS.	99	4	840
M, S	5.0 [3728.5]	BK105H	1VP-56	3	873
				2	903
				1	927
				9	572
				2	605
L, R	3.0 [2237.1]	BK105H	1VL-44	7	640
Ļ	3.0 [2	BK1	1VL	3	699
				2	701
				-	733
Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM

NOTES: 1. Factory sheave settings are shown in bold type.

2. Do not set motor sheave below minimum turns open shown.

Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure.
 Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

COMPONENT AIR RESISTANCE—15 TON [52.8 kW]

CFM	4800 [2265]	5000 [2360]	5200 [2454]	5400 [2549]	5600 [2643]	5800 [2737]	6000 [2832]	6200 [2926]	6400 [3020]	6600 [3115]	6800 [3209]	7000 [3304]	7200 [3398]
[[/8]		4			Res	istance —	- Inches o	Resistance — Inches of Water [kPa]	Pa]	,			
Wet Ceil	0.03	0.04	0.05	90.0	90.0	0.07	0.08	60.0	0.10	0.10	0.11	0.12	0.13
Wet coll	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.02]	[0.02]	[0.02]	[0.02]	[0.02]	[0.03]	[0.03]	[0.03]
	0.05	0.02	0.05	0.05	0.05	0.02	0.05	90.0	90.0	90.0	0.07	0.08	0.08
DOWILLIOW	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.02]	[0.05]	[0.02]
Downflow Economizer	60.0	0.10	0.10	0.11	0.12	0.13	0.13	0.14	0.15	0.16	0.16	0.17	0.18
R.A. Damper Open	[0.02]	[0.03]	[0.02]	[0.03]	[0.03]	[0.03]	[0.03]	[0.03]	[0.04]	[0.04]	[0.04]	[0.04]	[0.04]
Horizontal Economizer	00'0	0.01	0.01	0.02	0.02	0.03	0.03	0.04	0.04	0.05	0.05	90.0	90.0
R.A. Damper Open	[0.00]	[0.00]	[00.0]	[00.00]	[0.00]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]
Concentric Grill RXRN-AD80 or	0.21	0.25	0.28	0.32	0.35	0.39	0.43	0.46	0.50	0.54	0.57	0.61	0.64
RXRN-AD81 & Transition RXMC-CJ07	[0.02]	[0.00]	[0.0]	[0.08]	[0.09]	[0.10]	[0.11]	[0.11]	[0.12]	[0.13]	[0.14]	[0.15]	[0.16]
December December 0	890.0	0.072	9/0.0	0.08	0.084	0.088	0.092	0.096	0.1	0.104	0.108	0.112	0.116
riessule Diop Meny o	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[:03]	[:03]	[:03]
December Dress MCDV 40	0.009	0.015	0.021	0.028	0.034	0.04	0.046	0.052	0.058	0.065	0.071	0.077	0.083
riessure Diop MENV 13	[00.]	[.00]	[.00]	[.0]	[.01]	[.01]	[.01]	[.0]	[.01]	[.02]	[.02]	[.02]	[.02]

NOTE: Add component resistance to duct resistance to determine total external static pressure.

AIRFLOW CORRECTION FACTORS —15 TON [52.8 kW]

				•									
ACTUAL—CFM	4800	2000	5200	5400	2600	2800	0009	6200	6400	0099	0089	7000	7200
[L/s]	[2265]	[2360]	[2454]	[2549]	[2643]	[2737]	[2832]	[2926]	[3020]	[3115]	[3209]	[3304]	[3388]
TOTAL MBTUH	26.0	0.97	0.98	0.98	66.0	1.00	1.00	1.01	1.02	1.02	1.03	1.03	1.04
SENSIBLE MBTUH	0.87	06:0	0.92	0.94	26:0	0.99	1.02	1.04	1.06	1.09	1.11	1.14	1.16
POWER KW	86.0	0.98	0.99	66.0	66.0	1.00	1.00	1.00	1.01	1.01	1.01	1.02	1.02
NOTES: Multiply correction factor times gross performance data-resulting sensible	factor times gro	oss performance	edata-resulting		capacity cannot exceed total capacity	total capacity.					[] Design	Designates Metric Conversions	Conversions

AIRFLOW PERFORMANCE - 20 TON [70.3 kW]-60 Hz-SIDEFLOW

::	Š	흥	RLH.	240	ş	Model RKRL-H240 Voltage 208/230, 460, 575 — 3 Phase 60	38/23	0, 46	0, 57	<u>آ</u>	3 Pha	se 60	ΗZ																										
All															3	Extern	ıal Sta	atic P	ressu	re—	nches	External Static Pressure—Inches of Water [kPa]	iter [k	[ba]															
FIOW 0.1 [.02] 0.2 [.05] 0.3 [.07] 0.4 [.10] 0.5 [.12] 0.6 [.15]	0.1[.	05]	0.2[.0	5] 0	.3[.0	7] 0.	.4[.1	0 [0	1.5[.	12] [0.6	_	$0.7[.17] \mid 0.8[.20] \mid 0.9[.22] \mid 1.0[.25] \mid 1.1[.27] \mid 1.2[.30] \mid 1.3[.32] \mid 1.4[.35] \mid 1.5[.37] \mid 1.6[.40] \mid$	7] 0.	8 [.20)] O	9 [.22	1.1	0 [.25	1	1 [.27	1.	7 [.30	1.3	[.32	1.4	[.35]	1.5	[.37]	1.6	[.40]	1.7[.42]	1.7 [.42] 1.8 [.45] 1.9 [.47] 2.0 [.50]	45] 1	9. [.4	7] 2.	0[.50]	_
	RPM W R	W	Мd	WR	Мс	WR	Md	W	PM	W	3PM	æ	IPM W RPM	W R	W Mc	V RP	M	RP	M	/ RP	W.	/ RP	N	RPI	×	RPI	M	RPN	M	RPIV	٨	RPM	M						
6400 [3020]	Ι	1	<u> </u>	<u> </u>	1	<u> </u>	1	9 —	385 2	151 7	685 2151 707 2306		729 [2461] 750 [2617] 771 [2774] 792 [2932] 813 [3090] 833 [3250] 853 [3409] 872 [3570] 892 [3731] 911 [3894] 924 [428] 948 [4220] 966 [4384] 984 [4549]	161 7	50 261	17 77	'1 277	74 79	2 293	32 81	3 30	90 83	3 325	0 85	3 340	18 87	357	0 892	3731	911	3894	929	4056	948 4	220 9	66 43	84 98	4 427	6
6600 [3114]	l	1	<u>'</u> 	<u>'</u> 	<u>'</u> 	 -	<u>'</u> 	9	398 2.	306 7	698 2306 720 2462		741 2619] 762 2777 783 2936 804 3095 824 3255 844 3415 863 3577 882 3739 901 3902 920 4065 938 4230 966 4395 974 4561 992 4727	319 71	52 277	77 78	3 293	36 80	4 306	95 82	4 32	55 84	4 341	5 86	3 357	7 88	2 373	901	3902	920	4065	938	4230	926	395 9	74 45	61 99	2 472	7
6800 [3209]	Ι	-		- -	<u>.</u> 	39 —	90 23	313 7	712 2	470 7	690 2313 712 2470 733 2628		754 2786 775 2946 795 3106 815 3266 835 3428 854 3590 874 3753 892 3917 911 4081 <u> 929 4246 </u> 947 4412 965 4579 983 47461 1000 914	.86 7.	75 294	46 75	5 310	16 81.	5 326	36 83	5 34,	28 85	4 355	728 Ot	4 375	3 89	391	7 911	408	929	4246	947	4412	965 4	1229	83 47	46 10	30 <mark> </mark> 491	4
7000 [3303]	I	1	<u>.</u> I	39 —	82 25	682 2327 704 2484 725 2643 746 2802	04 24	484 7	725 2	643 7	746 2.		766 2962 787 3123 807 3285 827 344 7 846 3610 865 3774 884 3938 903 4103 921 4269 <u>939 4436</u> 957 4603 974 4771 991 494010085110	362 7a	87 312	23 80	7 328	35 82	7 344	47 84	.98 9	10 86	5 377	74 88	4 393	88	3 410	3 921	4269	939	4436	957	4603	974 4	1771	91 49	40/10	38 <mark>5</mark> 11	0
7200 [3398]	Ι		<u> </u>	39 —	96 25	696 2505 717 2665 738 2825 759 2985	17 26	365 7	738 2	825 7	759 2.		779 3147 799 3309 819 3472 838 3636 857 3801 876 3966 895 4132 913 4299 <u>931 4466 9</u> 49 4634 966 4803 983 4973 1000 5143	47 7	36 <u>33</u> 0	09 81	9 347	72 83	8 363	36 85	.7 38(71 87	9 396	95	5 413	12 91:	3 429	931	4466	949	4634	996	4803	983 4	97310	000 21	43 —		
7400 [3492]	I	1	389 2	333 7	10 26	689 2533 710 2693 731 2854 752 3015 772 3177	31 28	854 7	752 3	015 7	772 3		792 3341 812 3504 831 3669 850 3834 869 4000 887 4167 906 4334 924 4503 941 4672 959 4841 976 5012 992 518310095355	341 8	12 350	04 83	1 366	39 85	0 383	34 86	9 40(30 88 0C	7 416	12 90t	3 433	4 92	4 420	3 941	4672	929	4841	926	5012	992	1831	30953	22 —		
7600 [3586]] 682 [2566] 704 [2727] 724 [2889] 745 [3051] 765 [3214] 785 [3378]	682 2	. 995	704 2,	727 72	24 28	389 74	45 30	051 7	765 3.	214 7	785 3.		305 3543 824 3708 843 3874 862 4041 880 4209 899 4377 917 4546 934 4716 951 4886 968 5057 985 5229 1002 5402	343 8	24 370	08 84	3 387	74 86	2 404	41 88	0 420	39 89	9 437	7 91.	7 454	93	471	951	4886	968	5057	985	5229	10025			<u> </u> 		
[7800 [3681]] 697 2768 718 2931 739 3094 759 3258 779 3423 798 3588	2 269	. 89/	718 29	331 7.	39 30)94 7 <u>t</u>	59 35	258 7	79 3.	423	798 3.		818 3754 837 3921 856 4089 874 4257 892 4426 910 4596 <u> 928 4766 945 4937 </u> 962 5109 979 5282 995 5456	754 8.	37 392	21 85	904	39 87	4 425	57 89	12 44;	26 91	0 455	16 92	3 476	94	5 493	7 962	5108	626	5282	962	5456		<u>.</u> 	<u> </u>	<u> </u>	<u> </u>	
8000 [3775] 712 [2979 733 3143 753 3308 773 3473 793 3640 812 3806	712 2	. 626	733 3	143 7	53 33	308 7,	73 34	473 7	793 3	640 8	812 3	\sim	331 3974 850 4142 868 4312 886 4481 904 4652 921 4823 939 4995 956 5168 972 5342 989 5516 1005 5691	174 8	50 414	42 86	8 431	2 88	6 448	31 90	46	52 92	1 482	33	9 499	5 95	3 516	8 972	5342	686	5516	1005	5691	ı	1	1	 	1	
8200 [3869] 728 3199 748 3365 768 3531 787 3698 806 3865 825 4034	728 3	3199 7	748 3	365 7	68 35	331 78	87 36	9888	306 3,	865	825 4	034 8	844 4203 862 4373 881 4543 898 4715 916 4887 <u> 933 5060 </u> 950 5233 967 5407 983 5583 999 5758	303 8t	52 437	73 88	1 454	13 89	8 47	15 91	6 48	87 93	3 506	30 95() 523	96 8	7 540	7 983	5583	999	5758	1	1	1	1	 			
8400 [3964] 743 [3428 763 [3595 782 [3762 802]3931 820 4100 839 4270	743 3	3428 7	763 38	395 7	82 37	762 80	02 35	931 8	320 4	100	839 4.	270 8	857 4441 875 4612 893 4784 911 4957 928 5131 945 5305 961 5480 978 5656 994 5832 1009 6010	141 8.	75 467	12 89	3 478	34 91	1 496	57 92	8 51.	31 94	5 530	.96 5	1 548	0 97	3 565	994	5832	1006	6010	I	I	I	1	1	1	1	
8600 [4058] 758 3665 778 3834 797 4003 816 4173 835 4343 853 4515	758 3	3665 7	778 38	334 7	97 4t	93 8	16 41	173 8	335 4.	343 8	853 4.		371 4687 889 4860 906 5034 <u>923 5208</u> 940 5383 956 5559 973 5735 989 5913 1004 6091	387 8	39 486	90 90	6 503	34 92.	3 520	38 94	(0 53)	33 95	6 555	9 97	3 573	2 98	9 591	3100	4 609	1	1	1	1	1	1		 -		١.
8800 [4153] 774 3911 793 4081 812 4252 830 4423 849 4596 867 4769	774 3	3911 ,	793 4(181	12 42	252 8.	30 44	423 8	349 4.	969	867 4		884 4942 902 5117 919 5292 <mark> 936 5468 </mark> 952 5644 968 5822 984 6000 1000 6179	342 9t	02 51	17 91	9 525	32	6 546	38 95	.5 2e	44 96	8 582	2 98	4 60C	100	0 617	6		1	1	1	1	1	·	<u>'</u> 	 -		
9000 [4247] 790 4166 808 4338 827 4510 845 4683 863 4857 881 5031	790 4	1166	308 4	338 8.	27 4	510 84	45 46	883 8	363 4.	857	881 5	031	898 5206 915 5382 <u> 932 5559 </u> 948 5736 964 5915 980 6093 996 6273	6 90	15 538	82 93	2 555	94	8 573	36 96	4 59	15 98	309 O	13 89(5 627	.3 —	1	-	_			1	-	-		_		<u> </u>	
9200 [4341] 805 4430 824 4603 842 4777 860 4951 877 5127 895 5303	805 4	1430 {	324 46	303 8	42 47	777 8t	60 45	951 8	377 5	127 {	895 5.	303 ह	912 5479 <u> 929 5657 945 5835 </u> 961 6014 977 6194 992 6374 1008 6555	179 9.	29 56	57 94	5 583	35 96	1 60.	14 97	7 61	94 99	2 637	74 100	18 655	2	 -					1		1	-	<u>'</u> 	_	<u> </u>	
9400 [4436] 821 4703 839 4877 857 5052 875 5229 892 5405 909 5583	821 4	1703	339 48	377 8	57 50	152 8,	75 52	229 8	392 <u>5</u>	405	909 5.	583 €	926 5761 942 5940 958 6120 974 6300 989 6481 1005 6663	761	42 <u>59</u> 4	40 95	8 612	.0 97·	4 630	30 g8	19 64s	31 100)2 <u> </u> 666				-		_			1			<u>.</u> 	_	 	<u> </u>	
9600 [4530] 837 [4984] 855 [5160] 872 [5337] 890 [5514] 907 [5693] 923 [5872] <u>940 [6052]</u> 956 [6232] 971 [6413] 987 [6595] 1002 [6778]	837 4	1984 {	355 5	8 09	72 5	337 89	90 55	514 5	307 5	693	923 5	872	140 GC	152 9;	56 62:	32 97	7 641	3 98	7 659	35 10C)2 <mark>6</mark> 7.	- 82	_	1	1	1	<u> </u>	-	1	I		1	1	I	1	<u>'</u> 	1	_	
MIOTE: I Duise letter of heald line. M. Duise sight of held line. M. Duise sight of alexanter	to the c	hold	/ V - C - C		halmin	Jod 30	Lail La	2		halmi	och 3c	- I di																											l

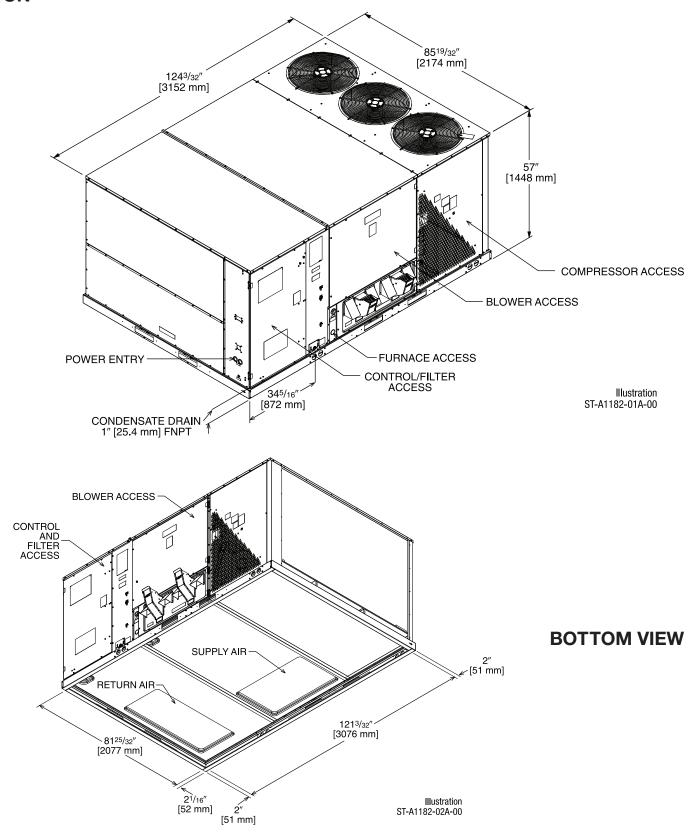
NOTE: L-Drive left of bold line, M-Drive right of bold line, N-Drive right of doouble line.

Drive Package			_						Σ					N(fi	N(field installed only)	lled only,	_	
Motor H.P. [W]			5.0 [3728.5]	[58.2]					7.5 [5592.7]	32.7]					7.5 [5592.7]	92.7]		
Blower Sheave			BK120H	JOH JOH					BK130H	동					BK120H	Н		
Motor Sheave			1VP-56	-56					1VP-71	71					1VP-71	71		
Turns Open	1	2	3	4	2	9	1	2	3	4	2	9	1	2	3	4	2	9
RPM	822	798	771	742	712	684	932	902	878	851	824	797	1007	878	949	921	892	863

NOTES: 1. Factory sheave settings are shown in bold type.
2. Do not set motor sheave below minimum turns open shown.

Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure.
 Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

COMPONENT AIRFLOW RESISTANCE-20 TON [70.3 kW]

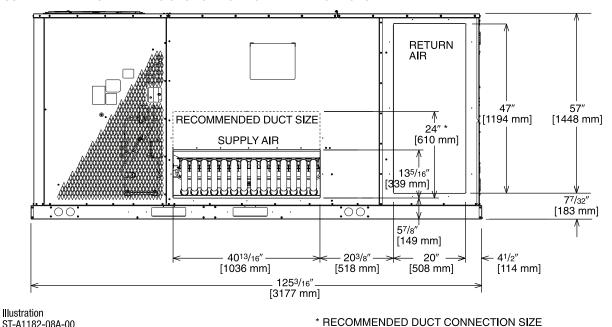

							Comp	Component Airflow Resistance	w Resistanc	9		
Airflow GFM [L/s]	Airfle	Airflow Correction Factors*	* \$10	Wet Coil	Downflow	Downflow Economizer RA Damper Open	Horizontal Economizer RA Damper Open	Concentric Grill RXRN-AD80 or RXRN-AD81 & Transition RXMC-CJ07	Concentric Grill RXRN-AD86 & Transition RXMC-CK08	Concentric Grill RXRN-AD88 & Transition RXMC-CL09	Pressure Drop MERV 8	Pressure Drop MERV 13
	Total MBH	Sensible MBH	Power kW				~	Resistance — Inches of Water [kPa]	of Water [kPa]			
6400 [3020]	0.97	0.88	0.98	0.01 [.00]	0.06 [.01]	0.15 [.04]	0.04 [.01]	0.50 [.12]	1	7.1	0.100 [.02]	0.058 [.01]
6600 [3114]	0.97	06:0	0.99	0.02 [.00]	0.06 [.01]	0.16 [.04]	0.05 [.01]	0.54 [.13]	I	7.5	0.104 [.02]	0.065 [.02]
6800 [3209]	0.98	0.92	0.99	0.03 [.01]	0.07 [.02]	0.16 [.04]	0.05 [.01]	I	I	7.8	0.108 [.03]	0.071 [.02]
7000 [3303]	0.98	0.94	0.99	0.03 [.01]	0.08 [.02]	0.17 [.04]	0.06 [.01]	I	I	8.2	0.112 [.03]	0.077 [.02]
7200 [3398]	0.99	96:0	0.99	0.04 [.01]	0.08 [.02]	0.18 [.04]	0.06 [.01]	I	0.38 [.09]	8.6	0.116 [.03]	0.083 [.02]
7400 [3492]	0.99	0.97	1.00	0.05 [.01]	0.09 [.02]	0.19 [.05]	0.07 [.02]	1	0.41 [.10]	9.0	0.120 [.03]	0.089 [.02]
7600 [3586]	1.00	0.99	1.00	0.06 [.01]	0.10 [.02]	0.20 [.05]	0.07 [.02]	I	0.44 [.11]	9.5	0.124 [.03]	0.095 [.02]
7800 [3681]	1.00	1.01	1.00	0.06 [.01]	0.11 [.03]	0.21 [.05]	0.08 [.02]	1	0.47 [.12]	6.6	0.128 [.03]	0.102 [.02]
8000 [3775]	1.01	1.03	1.00	0.07 [.02]	0.12 [.03]	0.22 [.05]	0.09 [.02]	1	0.50 [.12]		0.132 [.03]	0.108 [.03]
8200 [3869]	1.01	1.05	1.01	0.08 [.02]	0.13 [.03]	0.23 [.06]	0.09 [.02]	I	0.53 [.13]		0.136 [.03]	0.114 [.03]
8400 [3964]	1.02	1.07	1.01	0.09 [.02]	0.14 [.03]	0.24 [.06]	0.10 [.02]	1	0.56 [.14]		0.140 [.03]	0.120 [.03]
8600 [4058]	1.02	1.09	1.01	0.09 [.02]	0.15 [.04]	0.25 [.06]	0.10 [.02]	-	0.59 [.15]		0.144 [.03]	0.126 [.03]
8800 [4153]	1.03	1.10	1.01	0.10 [.02]	0.16 [.04]	0.26 [.06]	0.11 [.03]	1	0.62 [.15]		0.148 [.04]	0.132 [.03]
9000 [4247]	1.03	1.12	1.01	0.11 [.03]	0.18 [.04]	0.27 [.07]	0.11 [.03]	-	-		0.152 [.04]	0.138 [.03]
9200 [4341]	1.03	1.14	1.02	0.12 [.03]	0.19 [.05]	0.28 [.07]	0.12 [.03]	1	1		0.156 [.04]	0.145 [.04]
9400 [4436]	1.04	1.16	1.02	0.12 [.03]	0.20 [.05]	0.29 [.07]	0.12 [.03]	1	1		0.160 [.04]	0.151 [.04]
9600 [4530]	1.04	1.18	1.02	0.13 [.03]	0.22 [.05]	0.30 [.07]	0.13 [.03]	1	-		0.164 [.04]	0.157 [.04]
* Multiply correct	tion factor time	s gross performanc	e data-resulti	ng sensible c	apacity canno	* Multiply correction factor times gross performance data-resulting sensible capacity cannot exceed total capacity	city.			[]	[] Designates Metric Conversions	ic Conversions

^{*} Multiply correction factor times gross performance data-resulting sensible capacity cannot exceed total capacity.

		ELECTRICAL	DATA – RKRL- SERIE	S	
		H180CR	H180CS	H180DR	H180DS
	Unit Operating Voltage Range	187-253	187-253	414-506	414-506
ion	Volts	208/230	208/230	460	460
mat	Minimum Circuit Ampacity	75/75	79/79	38	40
Unit Information	Minimum Overcurrent Protection Device Size	90/90	90/90	45	45
U	Maximum Overcurrent Protection Device Size	100/100	100/100	50	50
	No.	2	2	2	2
	Volts	200/230	200/230	460	460
-	Phase	3	3	3	3
Compressor Motor	RPM	3450	3450	3450	3450
or	HP, Compressor 1	7 1/2	7 1/2	7 1/2	7 1/2
ress	Amps (RLA), Comp. 1	25/25	25/25	12.8	12.8
ш	Amps (LRA), Comp. 1	164/164	164/164	100	100
Compressor Motor Co	HP, Compressor 2	7 1/2	7 1/2	7 1/2	7 1/2
	Amps (RLA), Comp. 2	25/25	25/25	12.8	12.8
	Amps (LRA), Comp. 2	164/164	164/164	100	100
	No.	3	3	3	3
	Volts	208/230	208/230	460	460
or I	Phase	1	1	1	1
res	HP	1/3	1/3	1/3	1/3
mc	Amps (FLA, each)	2.4/2.4	2.4/2.4	1.4	1.4
C	Amps (LRA, each)	4.7/4.7	4.7/4.7	2.4	2.4
	No.	1	1	1	1
Fan	Volts	208/230	208/230	460	460
tor	Phase	3	3	3	3
Evaporator Fan	HP	3	5	3	5
Eval	Amps (FLA, each)	11.5/11.5	14.9/14.9	4.6	6.6
_	Amps (LRA, each)	74.5/74.5	82.6/82.6	38.1	46.3

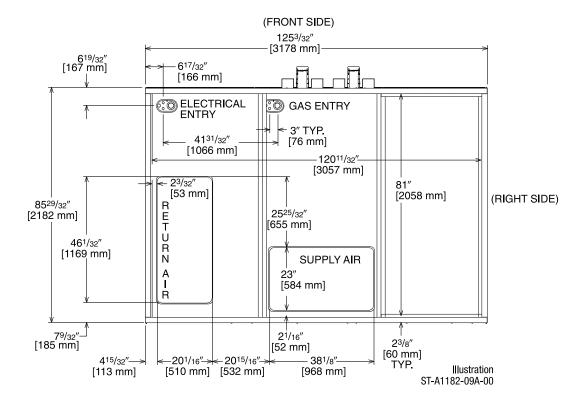
		ELECTRICAL	DATA – RKRL- SERIE	ES .	
		H240CR	H240CS	H240DR	H240DS
	Unit Operating Voltage Range	187-253	187-253	414-506	414-506
ion	Volts	208/230	208/230	460	460
mat	Minimum Circuit Ampacity	95/95	103/103	49	52
Unit Information	Minimum Overcurrent Protection Device Size	110/110	125/125	60	60
un	Maximum Overcurrent Protection Device Size	110/110	125/125	60	60
	No.	2	2	2	2
	Volts	200/230	200/230	460	460
<u>.</u>	Phase	3	3	3	3
Mot	RPM	3450	3450	3450	3450
30r	HP, Compressor 1	10	10	10	10
res	Amps (RLA), Comp. 1	30.1/30.1	30.1/30.1	16.7	16.7
Compressor Motor Compressor Motor	Amps (LRA), Comp. 1	225/225	225/225	114	114
	HP, Compressor 2	7 1/2	7 1/2	7 1/2	7 1/2
	Amps (RLA), Comp. 2	27.6/27.6	27.6/27.6	12.8	12.8
	Amps (LRA), Comp. 2	191/191	191/191	100	100
	No.	6	6	6	6
	Volts	208/230	208/230	460	460
sor	Phase	1	1	1	1
res	HP	1/3	1/3	1/3	1/3
d wc	Amps (FLA, each)	2.4/2.4	2.4/2.4	1.4	1.4
כי	Amps (LRA, each)	4.7/4.7	4.7/4.7	2.4	2.4
	No.	1	1	1	1
Fan	Volts	208/230	208/230	460	460
tor	Phase	3	3	3	3
pora	HP	5	7 1/2	5	7 1/2
Evaporator Fan	Amps (FLA, each)	14.7/14.7	23.1/23.1	6.6	9.6
_	Amps (LRA, each)	82.6/82.6	136/136	46.3	67

15 TON


20 TON 85²⁹/₃₂" [2182 mm] 45 152¹/₁₆"/ [3862 mm] 57" [1448 mm] COMPRESSOR ACCESS **BLOWER ACCESS** $\not \alpha$ **FURNACE ACCESS POWER ENTRY** 5¹³/₃₂" [137 mm] CONTROL/FILTER ACCESS 34⁵/₁₆" [872 mm] Illustration CONDENSATE DRAIN / 1" [25.4 mm] FNPT ST-A1125-01A 23¹/₁₆" [586 mm] 38⁵/₃₂"/ [969 mm] **BOTTOM VIEW** 2¹/₁₆" [52 mm] 2") [51 mm] 20¹/8" » [511 mm] 2⁷/16" [62 mm] 46¹/32″ [1169 mm] 2⁷/₁₆" > [62 mm] 1213/32" [3076 mm] 20⁷/8" > [530 mm] Illustration ST-A1125-02A 81²⁵/₃₂" [2077 mm] 5⁷/₃₂" [133 mm]-2" [51 mm] 21/16" [52 mm]

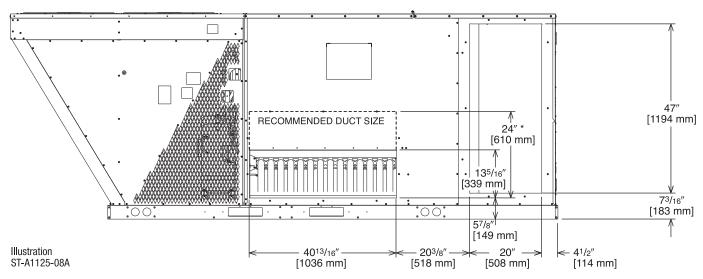
[] Designates Metric Conversions

15 TON


ST-A1182-08A-00

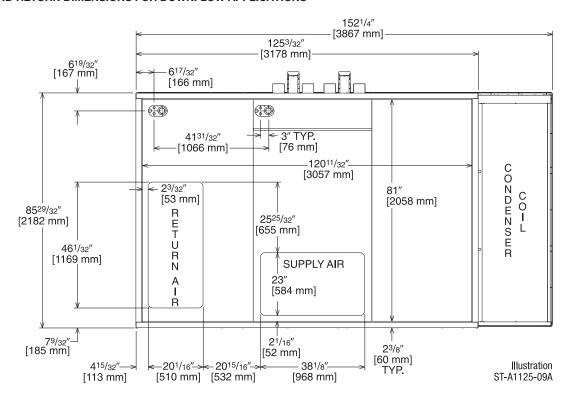
SUPPLY AND RETURN DIMENSIONS FOR HORIZONTAL APPLICATIONS

DUCT SIDE VIEW (REAR)

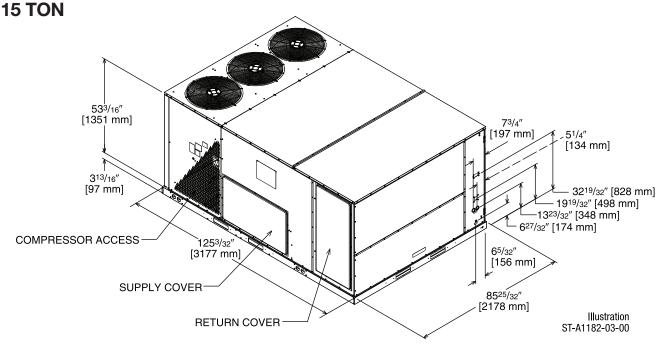

SUPPLY AND RETURN DIMENSIONS FOR DOWNFLOW APPLICATIONS

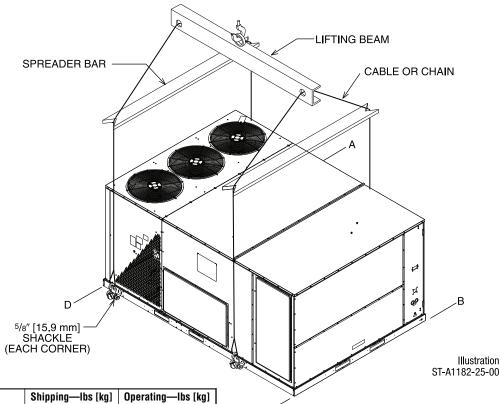
BOTTOM VIEW

20 TON


SUPPLY AND RETURN DIMENSIONS FOR HORIZONTAL APPLICATIONS

* RECOMMENDED DUCT CONNECTION SIZE

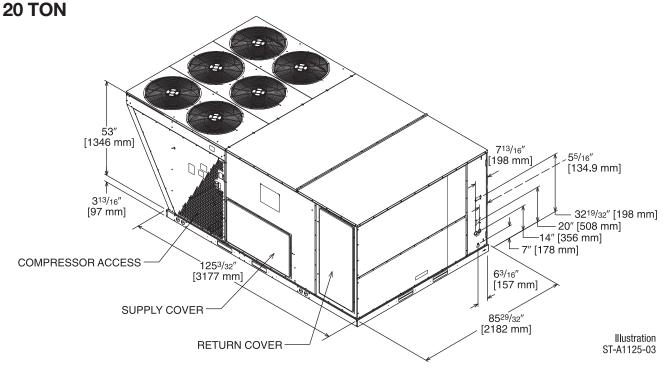

DUCT SIDE VIEW (REAR)

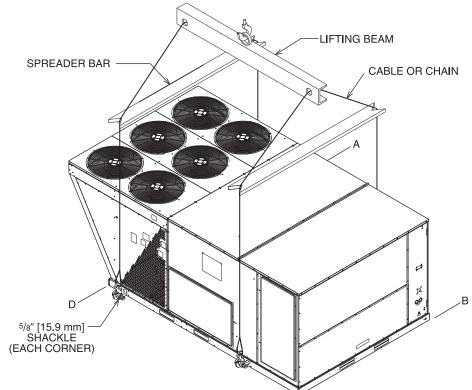

SUPPLY AND RETURN DIMENSIONS FOR DOWNFLOW APPLICATIONS

BOTTOM VIEW

UNIT DIMENSIONS GAS HEAT / ELECTRIC COOLING PACKAGE

WEIGHTS


Accessory	Shipping—lbs [kg]	Operating—lbs [kg]
Downflow Economizer	277 [125.6]	168 [76.2]
Horizontal Economizer	333 [151.0]	301 [136.5]
Power Exhaust	119 [54.0]	59 [26.8]
Manual Fresh Air Damper*	61 [27.7]	52 [23.6]
Motor Kit for Fresh Air Damper*	42 [19.1]	35 [15.9]
Roofcurb, 14"	184 [83.5]	176 [79.8]
Hail Guard	50 [22.7]	45 [20.4]


NOTES: *Motorized Kit and Manual Fresh Air Damper must be combined for a complete Motorized Outside Air Damper Selection.

Capacity Tons [kW]	Corner	Weights	by Perc	entage
	Α	В	С	D
15-25 [52.8-87.9]	32%	27%	16%	24%

Corner weights measured at base of unit.

UNIT DIMENSIONS GAS HEAT / ELECTRIC COOLING PACKAGE

C^

WEIGHTS

Accessory	Shipping—lbs [kg]	Operating—lbs [kg]
Economizer—Downflow	155 [70.31]	146 [66.22]
Economizer—Horizontal	165 [74.80]	155 [70.31]
Fresh Air Damper (Manual)	51 [23.13]	40 [18.14]
Fresh Air Damper (Motorized)	46 [20.87]	35 [15.88]
Roof Curb 14"	170 [77.11]	164 [74.39]

Corner weights measured at base of unit.

32%

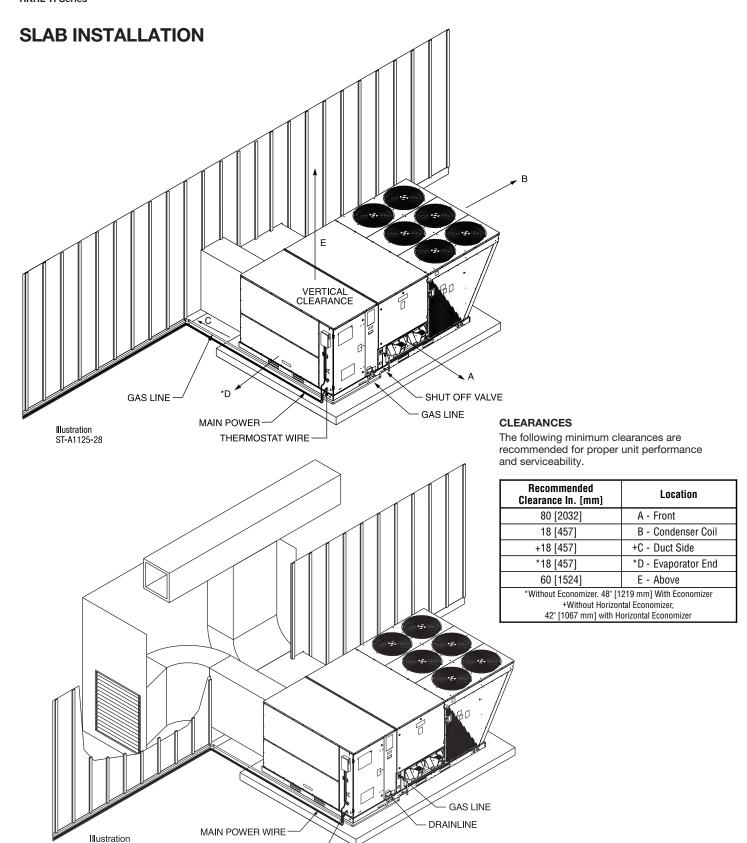
Capacity Tons [kW]

15-25 [52.8-87.9]

Corner Weights by Percentage

В

27%


С

16%

D

24%

^[] Designates Metric Conversions

[] Designates Metric Conversions

ST-A1125-27

THERMOSTAT WIRE

FIELD INSTALLED ACCESSORY EQUIPMENT

Accessory	Model Number	Shipping Weight Lbs. [kg]	Installed Weight Lbs. [kg]	Factory Installation Available?
Downflow Economizer w/Single Enthalpy (DDC)	AXRD-01RMDCM3	277 [125.6]	168 [76.2]	Yes
Downflow Economizer w/Smoke Detector (DDC)	AXRD-01RMDDM3	280 [127.0]	171 [77.6]	Yes
Dual Enthalpy Kit	RXRX-AV04	1 [.5]	.5 [0.2]	No
Horizontal Economizer w/Single Enthalpy (DDC)	AXRD-01RMHCM3	333 [151.0]	301 [36.5]	No
Carbon Dioxide Sensor (Wall Mount)	RXRX-AR02	3 [1.4]	2 [1.0]	No
Power Exhaust (208/230V)	RXRX-BGF05C	119 [54.0]	59 [26.8]	No
Power Exhaust (460V)	RXRX-BGF05D	119 [54.0]	59 [26.8]	No
Manual Fresh Air Damper*	AXRF-KFA1	61 [27.7]	52 [23.6]	No
Motorized Kit for Manual Fresh Air Damper*	RXRX-AW03	42 [19.1]	35 [15.9]	No
Modulating Motor Kit w/position feedback for RXRF-KFA1	RXRX-AW05	45 [20.4]	38 [17.2]	No
Roofcurb, 14"	RXKG-CBH14	184 [83.5]	176 [79.8]	No
Roofcurb Adapter to RXRK-E56	RXRX-CJCE56	465 [210.9]	415 [88.2]	No
Roofcurb Adapter to RXKG-CAF14	RXRX-CJCF14	555 [251.7]	505 [29.1]	No
Concentric Diffuser (Step-Down, 18" x 36")	RXRN-AD81	310 [140.6]	157 [71.2]	No
Concentric Diffuser (Step-Down, 24" x 48")	RXRN-AD86	367 [166.5]	212 [96.2]	No
Concentric Diffuser (Step-Down, 28" x 60")	RXRN-AD88	410 [186.0]	370 [67.8]	No
Concentric Diffuser (Flush, 18" x 36")	RXRN-AD80	213 [96.6]	115 [52.2]	No
Downflow Transition (Rect. to Rect., 18" x 36")	RXMC-CJ07	81 [36.7]	74 [33.6]	No
Downflow Transition (Rect. to Rect., 24" x 48")	RXMC-CK08	81 [36.7]	74 [33.6]	No
Downflow Transition (Rect. to Rect., 28" x 60")	RXMC-CL09	81 [36.7]	74 [33.6]	No
Low-Ambient Control Kit (1 Per Compressor)	RXRZ-C02	3 [1.4]	2 [0.9]	Yes
Unwired Convenience Outlet	RXRX-AN01	2 [0.9]	1.5 [.7]	Yes
Unfused Service Disconnect+	RXRX-AP01	10 [4.5]	9 [4.1]	Yes
Comfort Alert (1 per Compressor)	RXRX-AZ01	3 [1.4]	2 [0.9]	Yes
BACnet Communication Card	RXRX-AY01	1 [0.5]	1 [0.5]	No
LonWorks Communication Card	RXRX-AY02	1 [0.5]	1 [0.5]	No
Room Humidity Sensor	RHC-ZNS4	1 [0.5]+	1 [0.5]+	No*
Room Temperature and Relative Humidity Sensor	RHC-ZNS5	1 [0.5]+	1 [0.5]+	No*
Hail Guard Louvers	AXRX-AAD01L	55 [24.8]	45 [20.3]	Yes
MERV 8 Filter	RXMF-M08A22520	2 [0.9]	1 [0.45]	No
MERV 13 Filter	RXMF-M13A22520	2 [0.9]	1 [0.45]	No

^{*}Motorized Kit and Manual Fresh Air Damper must be combined for a complete Motorized Outside Air Damper Selection. +Do not use on or RKRL-C 300C voltage models.

^[] Designates Metric Conversions

FLUSH MOUNT ROOM TEMPERATURE SENSORS FOR NETWORKED DDC APPLICATIONS

ROOM TEMPERATURE SENSOR RHC-ZNS1 with TIMED OVERRIDE BUTTON

 $10k\Omega$ room temperature sensor transmits room temperature to DDC system. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time.

ROOM TEMPERATURE SENSOR RHC-ZNS2 with TIMED OVERRIDE BUTTON and STATUS INDICATOR

 $10k\Omega$ room temperature sensor transmits room temperature to DDC system. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time. Status Indicator Light transmits ALARM flash code to occupied space.

ROOM TEMPERATURE SENSOR RHC-ZNS3 with SETPOINT ADJUSTMENT and TIMED OVERRIDE BUTTON

 $10k\Omega$ room temperature sensor with setpoint adjustment transmits room temperature to DDC system along with desired occupied room temperature setpoint. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time.

COMMUNICATION CARDS Field Installed

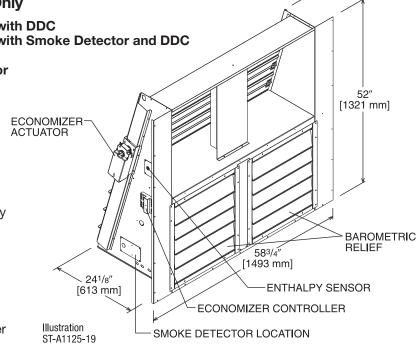
BACnet® COMMUNICATION CARD RXRX-AY01

The field installed BACnet® Communication Card allows the RTU-C unit controller to communicate with a third party building management system that supports the BACnet Application Specific Controller device profile. The BACnet® Communication Module plugs onto the unit RTU-C controller and allows communication between the RTU-C and the BACnet MSTP network.

LonWorks® COMMUNICATION CARD RXRX-AY02

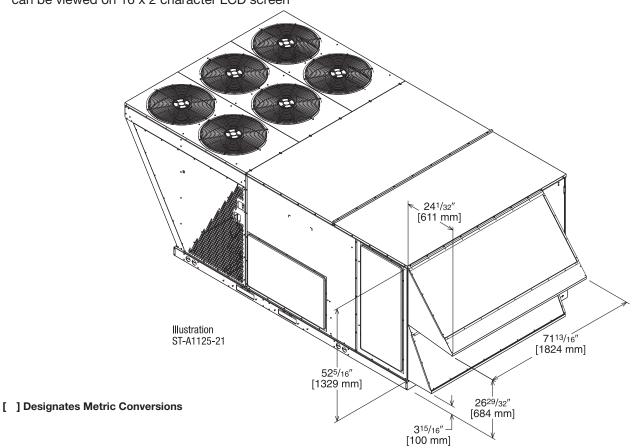
The field installed LonWorks® Communication Card allows the RTU-C unit controller to communicate with a third party building management system that supports the LonMark Space Comfort Controller (SCC) functional profile or LonMark Discharge Air Controller (DAC) functional profile. The LonMark Communication Module plugs onto the RTU-C controller and allows communication between the RTU-C and a LonWorks Network.

ECONOMIZERS


Use to Select Factory Installed Options Only

AXRD-01RMDCM3—Single Enthalpy (Outdoor) with DDC AXRD-01RMDDM3—Single Enthalpy (Outdoor) with Smoke Detector and DDC

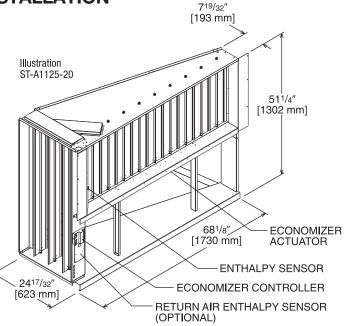
RXRX-AR02—Dual Enthalpy Upgrade Kit


RXRX-AV04—Optional Wall-Mounted CO₂ Sensor

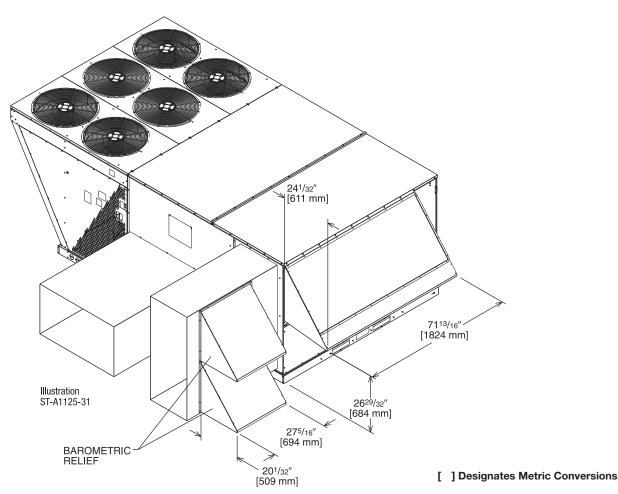
- Features **Honeywell** Controls
- Available Factory Installed or Field Accessory
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured No Field Adjustments Necessary
- Standard Barometric Relief Damper
- Single Enthalpy with Dual Enthalpy Upgrade Kit Available
- CO₂ Input Sensor Available
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for Downflow Duct Application
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is available from Prostock
- Field Installed Power Exhaust Available
- If connected to a Building Automation System (BAS), all economizer functions can be viewed on the (BAS) or 16 x 2 LCD screen
- If connected to thermostat, all economizer functions can be viewed on 16 x 2 character LCD screen

TOLERANCE ± .125

10" [254 mm]

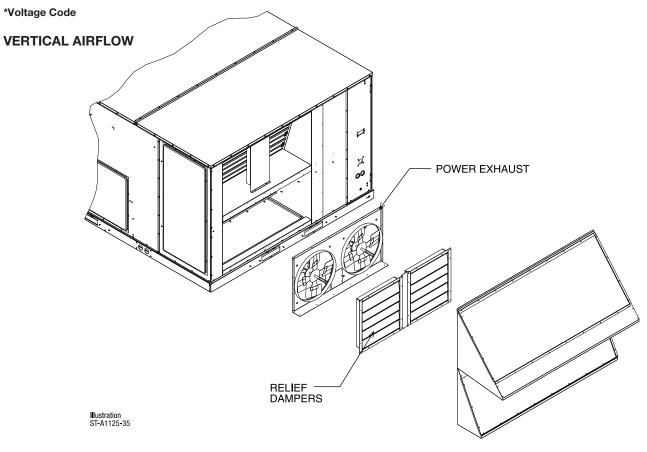

ECONOMIZER FOR HORIZONTAL DUCT INSTALLATION

Field Installed Only


AXRD-01RMHCM3—Single Enthalpy (Outdoor) with DDC

RXRX-AV04 — Dual Enthalpy Upgrade Kit RXRX-AR02 — Wall-mounted CO₂ Sensor

- Features Honeywell Controls
- Available as a Field Installed Accessory Only
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured No Field Adjustments Necessary
- Standard Barometric Relief Damper
- Single Enthalpy with Dual Enthalpy Upgrade Kit Available
- CO₂ Input Sensor Available
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for Horizontal Duct Application
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is available from Prostock
- Field Installed Power Exhaust Available
- If connected to a Building Automation System (BAS), all economizer functions can be viewed on the (BAS) or 16 x 2 LCD screen
- If connected to thermostat, all economizer functions can be viewed on 16 x 2 LCD screen



TOLERANCE ± .125

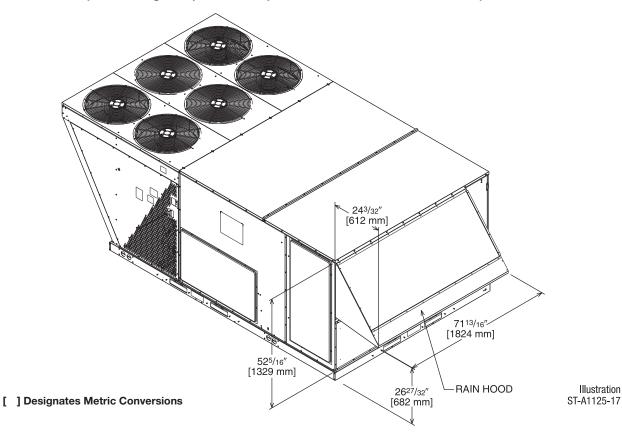
POWER EXHAUST KIT FOR AXRD-PMCM3 & SMCM3 ECONOMIZERS

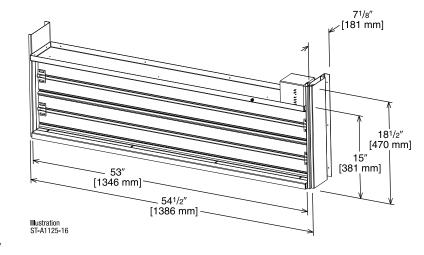
RXRX-BGF05 (C, D, or Y*)

Model No.	No. Volts		Phase	HP	Low Speed		High Speed ①		FLA	LRA
Model No.	of Fans	VUILS	riiase	(ea.)	CFM [L/s] ②	RPM	CFM [L/s] ②	RPM	(ea.)	(ea.)
RXRX-BGF05C	2	208-230	1	0.75	4100 [1935]	850	5200 [2454]	1050	5	4.97
RXRX-BGF05D	2	460	1	0.75	4100 [1935]	850	5200 [2454]	1050	2.2	3.4
RXRX-BGF05Y	2	575	1	0.75	4100 [1935]	850	5200 [2454]	1050	1.5	2.84

NOTES: ① Power exhaust is factory set on high speed motor tap. ② CFM is per fan at 0" w.c. external static pressure.

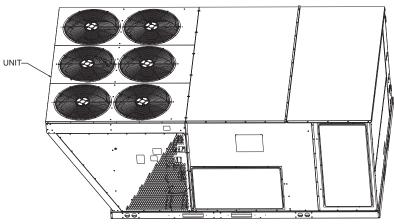
FRESH AIR DAMPER

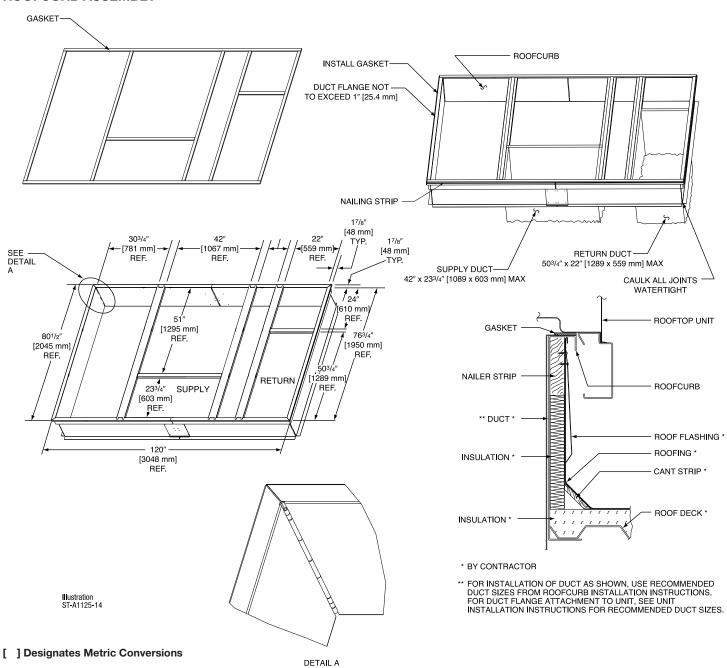

MOTORIZED DAMPER KIT RXRX-AW03 (Motor Kit for AXRF-KFA1) RXRX-AW05 (Modulating Motor Kit with position feedback for AXRF-KFA1)


- Features Honeywell Controls
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured No Field Adjustments Necessary
- Addition of Dual Enthalpy Upgrade Kit allows limited economizer function
- CO₂ Sensor Input Available for Demand Control Ventilation (DCV)
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is available from Prostock.
- All fresh air damper functions can be viewed at the RTU-C unit controller display
- If connected to a Building Automation System (BAS), all fresh air damper functions can be viewed on the (BAS), on 16 x 2 LCD screen
- If connected to thermostat, all fresh air damper functions can be viewed on 16 x 2 LCD screen

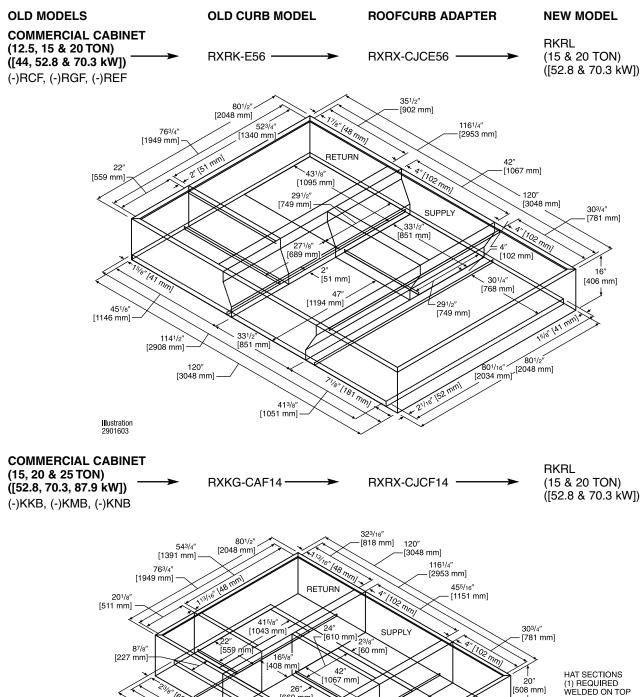
RXRX-AW03 (Motorized damper kit for manual fresh air damper)

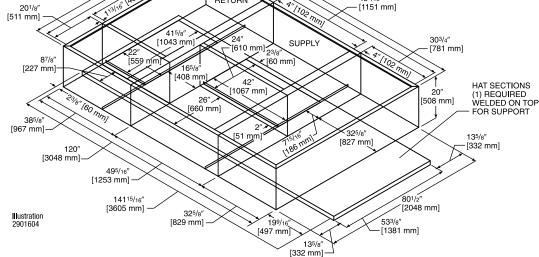
RXRX-AW05 (Modulating damper kit with position feedback for AXRF-KFA1)



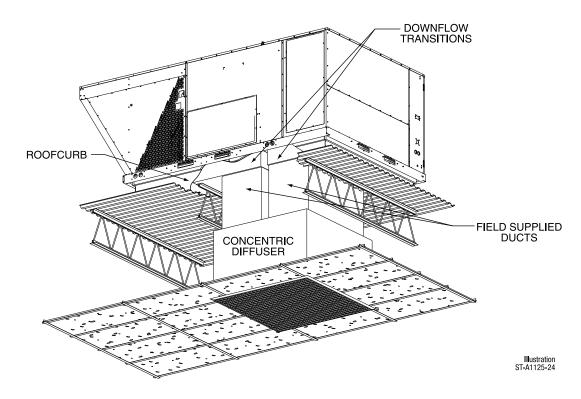

ROOFCURBS (Full Perimeter)

- Friedrich®'s new roofcurb designs can be utilized on 15, 17.5, 20 and 25 ton [52.8, 61.5. 70.3 and 70.3 kW] models.
- One available height (14" [356 mm]).
- Quick assembly corners for simple and fast assembly.
- 1" [25.4 mm] x 4" [102 mm] Nailer provided.
- Insulating panels not required because of insulated outdoor base pan.
- Sealing gasket (28" [711 mm]) provided with Roofcurb.
- Packaged for easy field assembly.

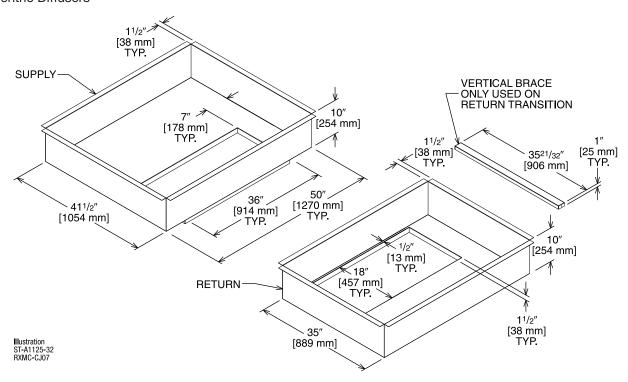

TYPICAL INSTALLATION



ROOFCURB ASSEMBLY

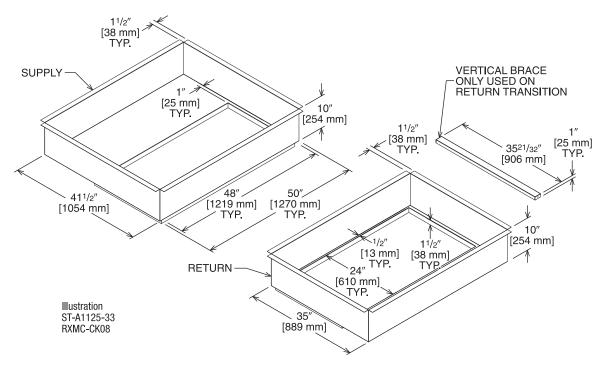


ROOFCURB ADAPTER

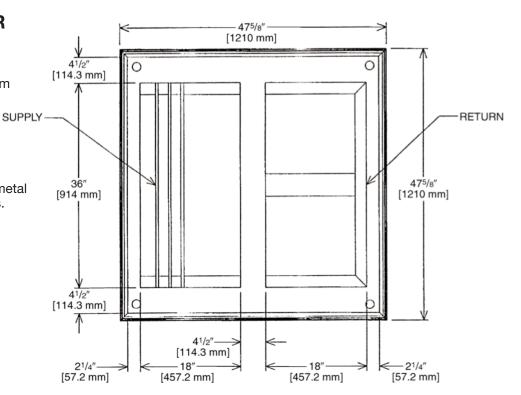

CONCENTRIC DIFFUSER APPLICATION

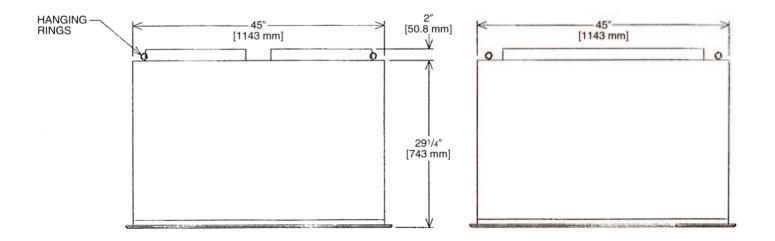
DOWNFLOW TRANSITION DRAWINGS

RXMC-CJ07 (15 Ton) [52.8 kW]


 Used with RXRN-AD80 and RXRN-AD81 Concentric Diffusers

DOWNFLOW TRANSITION DRAWINGS (Cont.)


RXMC-CK08 (20 Ton) [70.3 kW]


■ Used with RXRN-AD86 Concentric Diffusers

CONCENTRIC DIFFUSER RXRN-AD80 SERIES 15 TON [52.8 kW] FLUSH

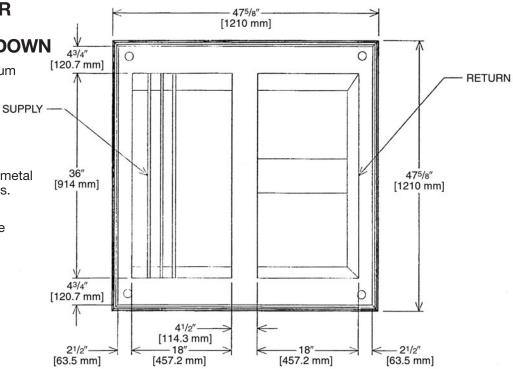
- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.

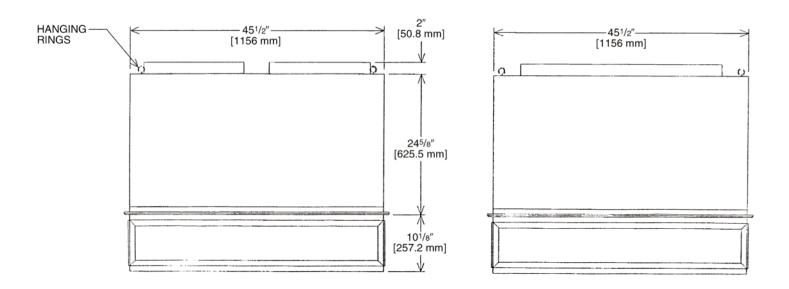
CONCENTRIC DIFFUSER SPECIFICATIONS

PART Number	CFM [L/s]	STATIC Pressure	THROW FEET	NECK Velocity	JET Velocity
RXRN-AD80	5600 [2643]	0.36	28-37	1000	2082
	5800 [2737]	0.39	29-38	1036	2156
	6000 [2832]	0.42	40-50	1071	2230
	6200 [2926]	0.46	42-51	1107	2308
	6400 [3020]	0.50	43-52	1143	2379
	6600 [3115]	0.54	45-56	1179	2454

CONCENTRIC DIFFUSER RXRN-AD81 SERIES 15 TON [52.8 kW] STEP DOWN

 All aluminum diffuser with aluminum return air eggcrate.

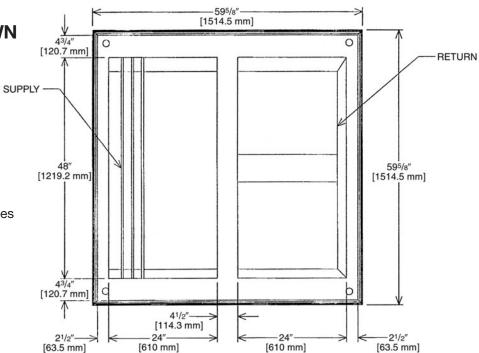

■ Built-in anti-sweat gasket.

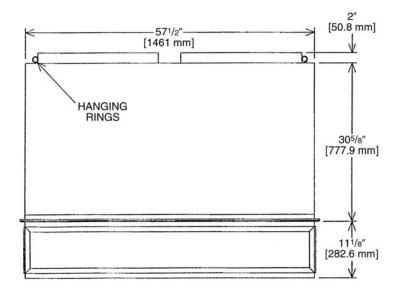

■ Molded fiberglass supports.

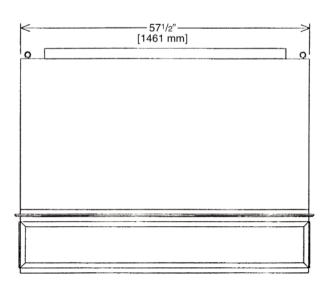
■ Built-in hanging supports.

 Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.

 Double deflection diffuser with the blades secured by spring steel.




CONCENTRIC DIFFUSER SPECIFICATIONS


PART Number	CFM [L/s]	STATIC Pressure	THROW FEET	NECK Velocity	JET Velocity
RXRN-AD81	5600 [2643]	0.36	39-49	920	920
	5800 [2737]	0.39	42-51	954	954
	6000 [2832]	0.42	44-54	1022	1022
	6200 [2926]	0.46	45-55	1056	1056
	6400 [3020]	0.50	46-55	1090	1090
	6600 [3115]	0.54	47-56	1124	1124

CONCENTRIC DIFFUSER RXRN-AD86 SERIES 20 TON [70.3 kW] STEP DOWN

- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.
- Double deflection diffuser with the blades secured by spring steel.

CONCENTRIC DIFFUSER SPECIFICATIONS

PART Number	CFM [L/s]	STATIC Pressure	THROW FEET	NECK Velocity	JET Velocity
RXRN-AD86	7200 [3398]	0.39	33-38	827	827
	7400 [3492]	0.41	35-40	850	850
	7600 [3587]	0.43	36-41	873	873
	7800 [3681]	0.47	38-43	896	896
	8000 [3776]	0.50	39-44	918	918
	8200 [3870]	0.53	41-46	941	941
	8400 [3964]	0.56	43-49	964	964
	8600 [4059]	0.59	44-50	987	987
	8800 [4153]	0.63	47-55	1010	1010

Guide Specifications RKRL-H180 thru H300

You may copy this document directly into your building specification. This specification is written to comply with the 2004 version of the "master format" as published by the Construction Specification Institute. www.csinet.org.

GAS HEAT PACKAGED ROOFTOP

HVAC Guide Specifications

Size Range: 15 to 25 Nominal Tons

Section Description

23 06 80 Schedules for Decentralized HVAC Equipment

23 06 80.13 Decentralized Unitary HVAC Equipment Schedule

23 06 80.13.A. Rooftop unit schedule

1. Schedule is per the project specification requirements.

23 07 16 HVAC Equipment Insulation

23 07 16.13 Decentralized, Rooftop Units:

- 1. Interior cabinet surfaces shall be insulated with a minimum 3/4-in. thick, minimum 1-1/2 lb density, flexible fiberglass insulation bonded with a phenolic binder, with aluminum foil facing on the air side.
- 2. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.

23 09 13 Instrumentation and Control Devices for HVAC

23 09 13.23 Sensors and Transmitters

23 09 13.23.A. Thermostats

Thermostat must

- a. have capability to energize 2 different stages of cooling, and 2 different stages of heating.
- b. must include capability for occupancy scheduling.

23 09 23 Direct-digital Control system for HVAC

23 09 23.13 Decentralized, Rooftop Units:

23 09 23.13.A. RTU-C controller

- 1. Shall be ASHRAE 62-2001 compliant.
- 2. Shall accept 18-32VAC input power.
- 3. Shall have an operating temperature range from -40°F (-40°C) to 158°F (70°C), 10% 95% RH (non-condensing).
- 4. Controller shall accept the following inputs: space temperature, setpoint adjustment, outdoor air temperature, indoor air quality, outdoor air enthalpy, fire shutdown, return air enthalpy, fan status, remote time clock/door switch.
- 5. Shall accept a CO2 sensor in the conditioned space, and be Demand Control Ventilation (DCV) ready.
- 6. Shall provide the following outputs: Economizer, fan, cooling stage 1, cooling stage 2, heat stage 1, heat stage 2, heat stage 3, exhaust/ occupied.
- 7. Unit shall provide surge protection for the controller through a circuit breaker.
- 8. Shall have a field installed communication card allowing the unit to be Internet capable, and communicate at a Baud rate of 19.2K or faster
- 9. Shall have an LED display independently showing the status of activity on the communication bus, and processor operation.
- 10. Shall have either a field installed BACnet® plug-in communication card which includes an EIA-485 protocol communication port, or a field installed LonWorks™ plug-in communications card.
- 11. Software upgrades will be accomplished by local download. Software upgrades through chip replacements are not allowed.
 - 12. Shall be shock resistant in all planes to 5G peak, 11ms during operation, and 100G peak, 11ms during storage.
 - 13. Shall be vibration resistant in all planes to 1.5G @ 20-300 Hz.
 - 14. Shall support a bus length of 4000 ft.max, 60 devices per 1000 ft.section, and 1 RS-485 repeater per 1000 ft.sections.
 - 23 09 23.13.B. Open protocol, direct digital controller:
 - 1. Shall be ASHRAE 62-2001 compliant.
 - 2. Shall accept 18-30VAC, 50-60Hz, and consume 15VA or less power.
 - 3. Shall have an operating temperature range from -40°F (-40°C) to 130°F (54°C), 10% 90% RH (non-condensing).
 - 4. Shall have either a field installed BACnet® plug-in communication card which includes an EIA-485 protocol communication port, or a field installed LonWorks™ plug-in communications card.
 - 5. The BACnet® plug in communication card shall include built-in protocol for BACNET (MS/TP and PTP modes)
 - 6. The LonWorks™ plug in communication card shall include the Echelon processor required for all Lon applications.
 - 7. Shall allow access of up sto 62 network variables (SNVT). Shall be compatible with all open controllers
 - 8. Baud rate Controller shall be selectable through the EIA-485 protocol communication port.
 - 9. Shall have an LED display independently showing the status of serial communication, running, errors, power, all digital outputs, and all analog inputs.
 - 10. Shall accept the following inputs: space temperature, setpoint adjustment, outdoor air temperature, indoor air quality, outdoor air enthalpy, compressor lock-out, fire shutdown, enthalpy switch, and fan status/filter status/ humidity/ remote occupancy.

- 11. Shall provide the following outputs: economizer, fan, cooling stage 1, cooling stage 2, heat stage 1, heat stage 2, heat stage 3, exhaust.
- 12. Software upgrades will be accomplished by either local or remote download. No software upgrades through chip replacements are allowed.

23 09 33 Electric and Electronic Control System for HVAC

23 09 33.13 Decentralized, Rooftop Units:

23 09 33.13.A. General:

- 1. Shall be complete with self-contained low-voltage control circuit protected by a resettable circuit breaker on the 24-v transformer side. Transformer shall have 100VA capabilities.
- 2. Shall utilize color-coded wiring.
- 3. The heat exchanger shall be controlled by an integrated furnace controller (IFC) microprocessor. See heat exchanger section of this specification.
- 4. Shall include a central control terminal board to conveniently and safely provide connection points for vital control functions such as: smoke detectors, phase monitor, economizer, thermostat, DDC control options, loss of charge, freeze sensor, high pressure switches.
- 5. Unit shall include a minimum of one 10-pin screw terminal connection board for connection of control wiring.

23 09 33.23.B. Safeties:

- 1. Compressor over-temperature, over current.
- 2. Loss of charge switch.
 - a. Units with 2 compressors shall have different colored wires for the circuit 1 and circuit 2 low and high pressure switches.
 - b. Loss of charge switch shall use different color wire than the high pressure switch. The purpose is to assist the installer and service technician to correctly wire and or troubleshoot the rooftop unit.
 - c. Loss of charge switch shall have a different sized connector than the high pressure switch. They shall physically prevent the cross-wiring of the safety switches between the high and low pressure side of the system.
- 3. High-pressure switch.
 - a. Units with 2 compressors shall have different colored wires for the circuit 1 and circuit 2 low and high pressure
 - b. High pressure switch shall use different color wire than the low pressure switch. The purpose is to assist the installer and service person to correctly wire and or troubleshoot the rooftop unit.
 - c. High pressure switch shall have a different sized connector than the loss of charge switch. They shall physically prevent the cross-wiring of the safety switches between the high and low pressure side of the system.
- 4. Freeze protection sensor, evaporator coil.
- 5. Automatic reset, motor thermal overload protector.
- 6. Heating section shall be provided with the following minimum protections.
 - a. High-temperature limit switches.
 - b. Induced draft motor pressure switch.
 - c. Flame rollout switch.
 - d. Flame proving controls.

23 09 93 Sequence of Operations for HVAC Controls

23 09 93.13 Decentralized, Rooftop Units:

23 40 13 Panel Air Filters

23 40 13.13 Decentralized, Rooftop Units:

23 40 13.13.A. Standard filter section shall

- 1. Shall consist of factory-installed, low velocity, throwaway 2-in. thick fiberglass filters of commercially available sizes.
- 2. Unit shall use only one filter size. Multiple sizes are not acceptable.
- 3. Filter face velocity shall not exceed 365 fpm at nominal airflows.
- 4. Filters shall be accessible through an access panel as described in the unit cabinet section of the specification (23 81 19.13.H).

23 81 19 Self-Contained Air Conditioners

23 81 19.13 Small-Capacity Self-Contained Air Conditioners

23 81 19.13.A. General

- 1. Outdoor, rooftop mounted, electrically controlled, heating and cooling unit utilizing a(n) hermetic scroll compressor(s) for cooling duty and gas combustion for heating duty.
- 2. Factory assembled, single-piece heating and cooling rooftop unit. Contained within the unit enclosure shall be all factory wiring, piping, controls, and special features required prior to field start-up.
- 3. Unit shall use environmentally safe, R-410A refrigerant.
- 4. Unit shall be installed in accordance with the manufacturer's instructions.
- 5. Unit must be selected and installed in compliance with local, state, and federal codes.

23 81 19.13.B. Quality Assurance

- 1. Unit meets ASHRAE 90.1-2004 minimum efficiency requirements.
- 2. 3 phase units are Energy Star qualified.
- 3. Unit shall be rated in accordance with AHRI Standards 210 and 360.
- 4. Unit shall be designed to conform to ASHRAE 15, 2001.
- 5. Unit shall be UL-tested and certified in accordance with ANSI Z21.47 Standards and UL-listed and certified under Canadian standards as a total package for safety requirements.
- 6. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.
- 7. Unit casing shall be capable of withstanding 500-hour salt spray exposure per ASTM B117 (scribed specimen).
- 8. Unit casing shall be capable of withstanding Federal Test Method Standard No. 141 (Method 6061) 5000-hour salt spray.
- 9. Unit shall be designed in accordance with ISO 9001:2000, and shall be manufactured in a facility registered by ISO 9001:2000.
- 10. Roof curb shall be designed to conform to NRCA Standards.
- 11. Unit shall be subjected to a completely automated run test on the assembly line. The data for each unit will be stored at the factory, and must be available upon request.
- 12. Unit shall be designed in accordance with UL Standard 1995, including tested to withstand rain.
- 13. Unit shall be constructed to prevent intrusion of snow and tested to prevent snow intrusion into the control box up to 40 mph.

23 81 19.13.C. Delivery, Storage, and Handling

- 1. Unit shall be stored and handled per manufacturer's recommendations.
- 2. Lifted by crane requires either shipping top panel or spreader bars.
- 3. Unit shall only be stored or positioned in the upright position.

23 81 19.13.E. Project Conditions

1. As specified in the contract.

23 81 19.13.F. Operating Characteristics

- 1. Unit shall be capable of starting and running at 115°F (46°C) ambient outdoor temperature, meeting maximum load criteria of AHRI Standard 210/240 or 360 at ± 10% voltage.
- 2. Compressor with standard controls shall be capable of operation down to 40°F (4°C), ambient outdoor temperatures. Accessory low ambient kit is necessary if mechanically cooling at ambient temperatures below 40°F (4°C).
- 3. Unit shall discharge supply air vertically or horizontally as shown on contract drawings.
- 4. Unit shall be factory configured for vertical supply & return configurations.
- 5. Unit shall be field convertible from vertical to horizontal configuration.

23 81 19.13.G. Electrical Requirements

1. Main power supply voltage, phase, and frequency must match those required by the manufacturer.

23 81 19.13.H. Unit Cabinet

- 1. Unit cabinet shall be constructed of galvanized steel, and shall be bonderized and coated with a baked enamel finish on all externally exposed surfaces.
- 2. Unit cabinet exterior paint shall be: film thickness, (dry) 0.003 inches minimum, gloss (per ASTM D523, 60°F / 16°C): 60, Hardness: H-2H Pencil hardness.
- 3. Evaporator fan compartment interior cabinet insulation shall conform to AHRI Standards 210 or 360 minimum exterior sweat criteria. Interior surfaces shall be insulated with a minimum 3/4-in. thick, 1 lb. density, flexible fiberglass insulation, aluminum foil-face coated on the air side.
- 4. Base of unit shall have locations for thru-the-base gas and electrical connections (factory installed or field installed), standard.
- 5. Base Rail
 - a. Unit shall have base rails on all sides.
 - b. Holes shall be provided in the base rails for rigging shackles to facilitate maneuvering and overhead rigging.

RKRL-H Series

- c. Holes shall be provided in the base rail for moving the rooftop by fork truck.
- d. Base rail shall be a minimum of 14 gauge thickness.
- 6. Condensate pan and connections:
 - a. Shall be a sloped condensate drain pan made of a non-corrosive material.
 - b. Shall comply with ASHRAE Standard 62.
 - c. Shall use a 1" x 11-1/2 NPT drain connection through the side of the drain pan. Connection shall be made per manufacturer's recommendations.

7. Gas Connections:

- a. All gas piping connecting to unit gas valve shall enter the unit cabinet at a single location on side of unit (horizontal plane).
- b. Thru-the-base capability
 - i. Standard unit shall have a thru-the-base gas-line location using a raised, embossed portion of the unit basepan.
 - ii. No basepan penetration, other than those authorized by the manufacturer, is permitted.

8. Electrical Connections

- a. All unit power wiring shall enter unit cabinet at a single, factory-prepared, knockout location.
- b. Thru-the-base capability
 - i. Standard unit shall have a thru-the-base electrical location(s) using a raised, embossed portion of the unit basepan.
 - ii. No basepan penetration, other than those authorized by the manufacturer, is permitted.
- 9. Component access panels (standard)
 - a. Cabinet panels shall be easily removable for servicing.
 - b. Stainless steel metal hinges are standard on all doors.
 - c. Panels covering control box, indoor fan, indoor fan motor and gas components (where applicable), shall have 1/4 turn latches.

23 81 19.13.I. Gas Heat

1. General

- a. Heat exchanger shall be an induced draft design. Positive pressure heat exchanger designs shall not be allowed.
- b. Shall incorporate a direct-spark ignition system and redundant main gas valve.
- c. Heat exchanger design shall allow combustion process condensate to gravity drain; maintenance to drain the gas heat exchanger shall not be required.
- d. Gas supply pressure at the inlet to the rooftop unit gas valve must match that required by the manufacturer.
- 2. The heat exchanger shall be controlled by an integrated furnace controller (IFC) microprocessor.
 - a. IFC board shall notify users of fault using an LED (light-emitting diode).
- 3. Standard Heat Exchanger construction
 - a. Heat exchanger shall be of the tubular-section type constructed of a minimum of 20-gauge aluminum coated steel for corrosion resistance.
 - b. Burners shall be of the in-shot type constructed of aluminum-coated steel.
 - c. Burners shall incorporate orifices for rated heat output up to 2000 ft.(610m) elevation. Additional accessory kits may be required for applications above 2000 ft.(610m) elevation, depending on local gas supply conditions.
- 4. Optional Stainless Steel Heat Exchanger construction
 - a. Use energy saving, direct-spark ignition system.
 - b. Use a redundant main gas valve.
 - c. Burners shall be of the in-shot type constructed of aluminum-coated steel.
 - d. All gas piping shall enter the unit cabinet at a single location on side of unit (horizontal plane).
 - e. The optional stainless steel heat exchanger shall be of the tubular-section type, constructed of a minimum of 20-gauge type 409 stainless steel.
 - f. Type 409 stainless steel shall be used in heat exchanger tubes and vestibule plate.
 - g. Complete stainless steel heat exchanger allows for greater application flexibility.
- 5. Induced draft combustion motors and blowers
 - a. Shall be a direct-drive, single inlet, forward-curved centrifugal type.

- b. Shall be made from steel with a corrosion-resistant finish.
- c. Shall have permanently lubricated sealed bearings.
- d. Shall have inherent thermal overload protection.
- e. Shall have an automatic reset feature.

23 81 19.13.J. Coils

- 1. Standard Aluminum/Copper Coils:
 - a. Standard evaporator and condenser coils shall have aluminum lanced plate fins mechanically bonded to seamless internally grooved copper tubes with all joints brazed.
 - b. Evaporator and condenser coils shall be leak tested to 150 psig, pressure tested to 550 psig, and qualified to UL 1995 burst test at 2,200 psi.

23 81 19.13.K. Refrigerant Components

- 1. Refrigerant circuit shall include the following control, safety, and maintenance features:
 - a. Thermal Expansion Valves (TXV) with orifice type distributor.
 - b. Refrigerant filter drier.
 - c. Service gauge connections on suction and discharge lines.
 - d. Pressure gauge access through an access port in the front and rear panel of the unit.

2. Compressors

- a. Unit shall use one fully hermetic, scroll compressor for each independent refrigeration circuit.
- b. Compressor motors shall be cooled by refrigerant gas passing through motor windings.
- Compressors shall be internally protected from high discharge temperature conditions. Advanced Scroll Temperature Protection on 240-300 sizes.
- d. Compressors shall be protected from an over-temperature and over-amperage conditions by an internal, motor overload device.
- e. Compressor shall be factory mounted on rubber grommets.
- f. Compressor motors shall have internal line break thermal and current overload protection.
- g. Crankcase heaters shall not be required for normal operating range.

23 81 19.13.L. Filter Section

- 1. Filters access is specified in the unit cabinet section of this specification.
- 2. Filters shall be held in place by filter tray, facilitating easy removal and installation.
- 3. Shall consist of factory-installed, low velocity, throw-away 2-in. thick fiberglass filters.
- 4. Filter face velocity shall not exceed 365 fpm at nominal airflows.
- 5. Filters shall be standard, commercially available sizes.
- 6. Only one size filter per unit is allowed.

23 81 19.13.M. Evaporator Fan and Motor

- 1. Evaporator fan motor:
 - a. Shall have permanently lubricated bearings.
 - b. Shall have inherent automatic-reset thermal overload protection.
 - c. Shall have a maximum continuous bhp rating for continuous duty operation; no safety factors above that rating shall be required.
- 2. Belt-driven Evaporator Fan:
 - a. Belt drive shall include an adjustable-pitch motor pulley.
 - b. Shall use sealed, permanently lubricated ball-bearing type.
 - c. Blower fan shall be double-inlet type with forward-curved blades.
 - d. Shall be constructed from steel with a corrosion resistant finish and dynamically balanced.

23 81 19.13.N. Condenser Fans and Motors

- 1. Condenser fan motors:
 - a. Shall be a totally enclosed motor.
 - b. Shall use permanently lubricated bearings.
 - c. Shall have inherent thermal overload protection with an automatic reset feature.
 - d. Shall use a shaft-down design. Shaft-up designs including those with "rain-slinger devices" shall not be allowed.
- 2. Condenser Fans shall:
 - a. Shall be a direct-driven propeller type fan
 - b. Shall have aluminum blades riveted to corrosion-resistant steel spiders and shall be dynamically balanced.

Limited	d Warranty	
DKDI.	H Sarias	

BEFORE PURCHASING THIS APPLIANCE, READ IMPORTANT ENERGY COST AND EFFICIENCY INFORMATION AVAILABLE FROM YOUR RETAILER.

GENERAL TERMS OF LIMITED WARRANTY*

Friedrich® will furnish a replacement for any part of this product which fails in normal use and service within the applicable periods stated, in accordance with the terms of the limited warranty.

Compressor

3 Phase, Commercial Applications.....Five (5) Years

3 Phase, Commercial ApplicationsOne (1) Year

Stainless Steel Heat Exchanger

3 Phase, Commercial ApplicationsTwenty (20) Years

^{*}For complete details of the Limited and Conditional Warranties, including applicable terms and conditions, contact your local contractor or the Manufacturer for a copy of the product warranty certificate.

Notes

RKRL-H Series

Before proceeding with installation, refer to installation instructions packaged with each model, as well as complying with all Federal, State, Provincial, and Local codes, regulations, and practices.

© 2023 Rheem Manufacturing Company. Friedrich trademarks owned by Rheem Manufacturing Company. In keeping with its policy of continuous progress and product improvement, Friedrich reserves the right to make changes without notice.

Friedrich • 5600 Old Greenwood Road Fort Smith, Arkansas 72908 • www.friedrich.com Friedrich • 125 Edgeware Road, Unit 1 Brampton, Ontario • L6Y 0P5